КВАНТОВО-ХИМИЧЕСКАЯ МОДЕЛЬ КАТАЛИЗАТОРА VO_x на TiO₂ ДЛЯ ДЕГИДРИРОВАНИЯ ПРОПАНА

Агафонов А.А.¹, Никитина Н.А.¹, Голосная М.Н.¹, Пичугина Д.А.¹

¹ Химический факультет МГУ имени М.В. Ломоносова, Москва *andrew.a.agafonov@gmail.com

Актуальность работы

Актуальность изучения механизма действия каталитического ОКСИДНЫХ дегидрирования катализаторов реакции необходимостью определяется пропана создания новых катализаторов, позволяющих экологически организовать чистое производство пропилена. Пропилен является для полипропилена, потребность сырьем которого постоянно растет.

$$CH_2$$
 CH_3
 CH_3
 CH_3
 CH_3
 CH_4
 CH_2
 CH_4
 CH_5
 CH_6
 CH_7
 CH_8
 CH_8

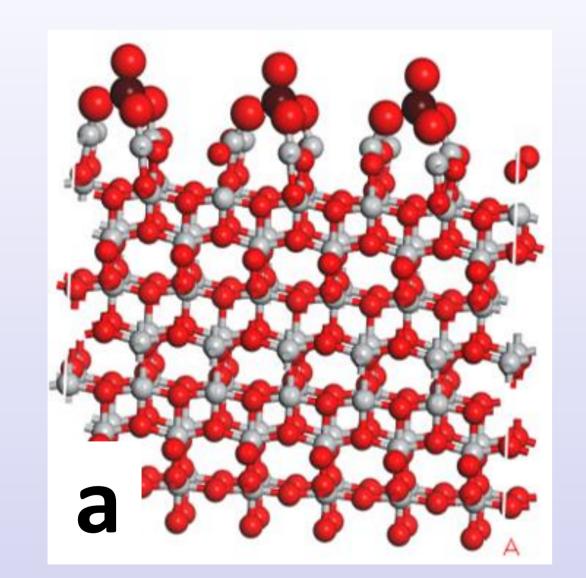
Модель катализатора

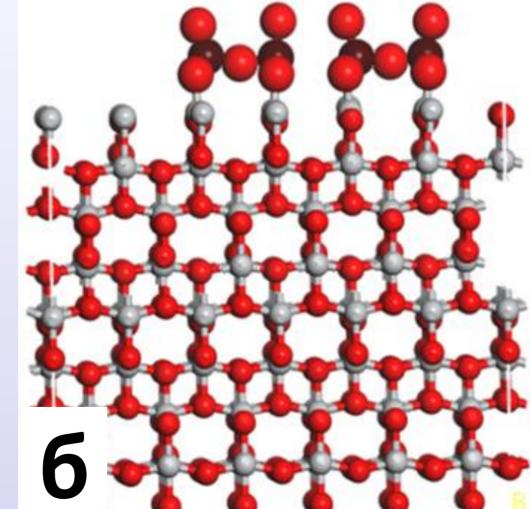
Ванадий-содержащие оксидные катализаторы, подложку диоксида нанесенные титана, известными являются довольно катализаторами процесса дегидрирования пропана.

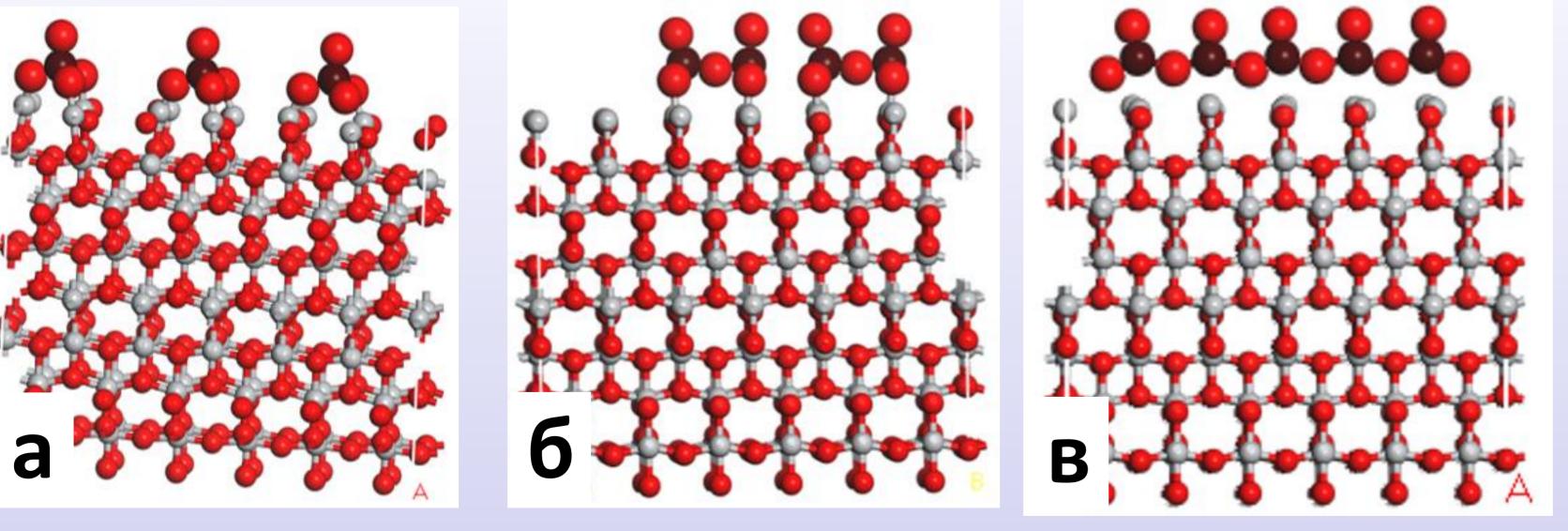
Подобные системы представляют СЛОЖНУЮ геометрическая систему, которой структуры электронная СИЛЬНО зависимы от реакционных условий, от условий приготовления катализаторов. VO_x в таких системах может быть связан с ТіО2 (анатаз) в виде мономерных, димерных или полимерных частиц:

Цель работы

Моделирование возможных мономерных, димерных и полимерных частиц VO_x, связанных с модельным фрагментом ТіО2 (анатаз), и определение их энергетических параметров.


Метод моделирования


Вычисление проводили с использованием программного обеспечения VASP (метод функционала плотности GGA/PBE, базис плоских волн, PAW).


Энергетические параметры системы определяли по формуле:

 $\Delta E = E(VO_x - TiO_2) - E(VO_x) - E(TiO_2)$

Результаты

Модельные системы изолированных (а), димерных (б) и полимерных (в) VO_x частиц на TiO₂ (анатаз).

Модель	Изолированные	Димерные	Полимерные
	частицы	частицы	частицы
Е, кДж	-84	-58	-32

Энергии связей VO_x-TiO₂

Видно, что энергии взаимодействия $V-O(TiO_2)$ уменьшаются в ряду:

> Изолированные частицы Димерные частицы Полимерные частицы

Так же в данном ряду увеличиваются и длины связей $V-O(TiO_2)$: 1,83 Å (изолированная модель), 1,87 А (димерная модель), 2,15 Å (полимерная модель).

Данная работа выполнена при поддержке проекта РФФИ, грант № 18-33-00431. Работа выполнена с использованием оборудования Центра коллективного пользования сверхвысокопроизводительными вычислительными ресурсами МГУ имени М.В. Ломоносова.