

Комплексообразование в каталитической системе PdBr₂-LiBr-CH₃CN-H₂O, используемой в синтезе янтарного ангидрида

Путин А.Ю., Кацман Е.А., Брук Л.Г.

МИРЭА – Российский технологический университет (РТУ МИРЭА), Москва, Россия, e-mail: putin@mirea.ru

Палладийсодержащие гомогенные каталитические системы используются для получения ценных продуктов органического синтеза: карбоновых кислот и их производных. Так, янтарный ангидрид селективно образуется (1) в каталитической системе PdBr₂-LiBr-CH₃CN-H₂O при 40 ° C и 1 атм [1, 2]

 $HC = CH + 2CO + H_2O = (CH_2)_2(CO)_2O$ (1)

Кинетические закономерности этого процесса были изучены ранее [1,2], но недостаток информации о состоянии каталитической системы и распределении палладия между различными комплексами не позволил предложить достаточно детальный механизм процесса. Основной целью данной работы является информация о равновесии комплексообразования палладия в системе PdBr₂-LiBr-CH₃CN-H₂O. Данная информация получена методами электронной и инфракрасной спектроскопии. Выполнено отнесение полос поглощения к различным комплексам палладия в модельных и реакционных системах.

nm

Рис. 1. Электронные спектры поглощения растворов PdBr₂, LiBr в ацетонитриле ([PdBr₂]₅ = 5*10⁻³М). Толщина кюветы 0.01 см.

Математическая обработка полученных данных выполнена с использованием гипотез, включающих образование мономерных и димерных комплексов палладия (табл. 1) [3].

Таблица1. Рассмотренные модели комплексообразования

Стадии комплексообразования	Модели комплексообразования
(1) $Pd^{2+} + Br^{-} \leftrightarrows PdBr^{+}$	« 0, 1, 2, 3, 4 » [*] – стадии 1, 2, 3, 4.
(2) $PdBr^+ + Br^- \hookrightarrow PdBr_2$	« 1. 2. 3. 4 » – стадии 2. 3. 4.
(3) $PdBr_2 + Br^- \hookrightarrow PdBr_3^-$	« 2, 3, 4 » – стадии 3, 4.
(4) $PdBr_{3}^{-} + Br^{-} \hookrightarrow PdBr_{4}^{2-}$	« 3, 4 » – стадия 4.
(5) $2PdBr_3^{-} \hookrightarrow Pd_2Br_6^{2-}$	Модель с Pd₂Br₆²⁻ – стадии 2, 3, 4, 5.
(6) $PdBr_2 \hookrightarrow Pd_2Br_4$	Модель с Pd₂Br₄ – стадии 2, 3, 4, 6.
(7) $2PdBr^+ \hookrightarrow Pd_2Br_2^{2+}$	Модель с Pd ₂ Br ₄ , Pd ₂ Br ₆ ²⁻ –
	стадии 2, 3, 4, 5, 6.
	Модель с Pd ₂ Br ₂ ²⁺ , Pd ₂ Br ₄ , Pd ₂ Br ₆ ²⁻ –
	стадии 2, 3, 4, 5, 6, 7.

Таблица 2. Среднеквадратичные погрешности описания результатов экспериментов для моделей, учитывающих образование мономерных и димерных комплексов

Модель	«3,4»	«2,3,4»	«1,2,3,4»	«0,1,2,3,4»
Погрешность	4.78%	4.51%	3.71%	3.39%
Модель	c Pd ₂ Br ₆ ²⁻	c Pd ₂ Br ₄	c Pd ₂ Br ₄ , Pd ₂ Br ₆ ²⁻	c Pd ₂ Br ₂ ²⁺ , Pd ₂ Br ₄ , Pd ₂ Br ₆ ²⁻
Погрешность	3.25%	3.57%	2.99%	2.76%

LiBr – CH₃CN при [PdBr₂]₅ = 5*10⁻⁴М. Кювета 0.01 см.

LiBr – CH₃CN при [PdBr₂]₅ = 5*10⁻⁴М. Кювета 0.5 см.

Исходя из литературных данных по системе PdCl₂ – LiCl – CH₃CN [4] и величины среднеквадратичной погрешности описания результатов экспериментов (табл. 2), модель, учитывающая образование трёх димерных комплексов Pd₂Br₂²⁺, Pd₂Br₄, Pd₂Br₆²⁻, предпочтительнее остальных для описания равновесия комплексообразования в системе PdBr₂- LiBr – CH3CN. В соответствии с этой моделью, в системе PdBr₂-LiBr-CH₃CN присутствуют следующие комплексы: Pd₂Br₂²⁺, Pd₂Br₄, Pd₂Br₆²⁻ PdBr⁺, PdBr₂, PdBr₃⁻ and PdBr₄²⁻. Комплексообразование можно описать стадиями 2, 3, 4, 5, 6, 7 (табл.1). Вычисленные десятичные логарифмы констант равновесия стадий 2, 3, 4, 5, 6, 7 соответственно равны: $IgK_2 = 0.27 \pm 0.40$; $IgK_3 = 2.19 \pm 0.15$; $IgK_4 = 0.66 \pm 0.09$; $IgK_5 = 1.85 \pm 0.69$; $IgK_6 = 5.76$; $IgK_7 = 2.46 \pm 0.50$.

Рис. 3. Кривые распределения концентраций комплексов в модели, учитывающей образование Pd₂Br₂²⁺, Pd₂Br₄ и Pd₂Br₆²⁻ ([PdBr₂]_Σ = 0.005M)

Рис. 4. Электронные спектры комплексов PdBr⁺, Pd₂Br₂²⁺, Pd₂Br₄. PdBr₃⁻ and PdBr₄²⁻. Электронные спектры комплексов PdBr₂ и Pd₂Br₆²⁻ восстановить не удалось из-за очень низких концентраций этих соединений, полученных в результате расчёта.

15 min CO

-1 h CO

-2hCO

80

60

2120 см

term. C=O

%T

Система PdBr₂-LiBr-CH₃CN до и после контакта с СО

1908 cm bridge C=O PdBr, - LiBr - CH,CN

Состояние комплексов палладия в каталитической системе PdBr₂ - LiBr - CH₃CN - H₂O в ходе карбонилирования ацетилена

Схема 1. Образование карбонила из Pd₂Br₄ (AN-ацетонирил)

 $Pd_2Br_2(CO)_2 + C_2H_2 \underset{K_1}{\stackrel{K_1}{\leftrightarrow}} Pd_2Br_2(CO)(C_2H_2) + CO$ $Pd_2Br_2(CO)(C_2H_2) + CO \xrightarrow{k_2} Pd_2Br_2(CO)_2(C_2H_2)$ $Pd_2Br_2(CO)_2(C_2H_2) + H_2O \rightarrow (MA)Pd_2Br_2(H)_2$ $(\mathsf{MA})\mathsf{Pd}_{2}\mathsf{Br}_{2}(\mathsf{H})_{2} + \mathsf{C}_{2}\mathsf{H}_{2} \stackrel{_{\mathsf{N}_{3}}}{\leftrightarrow} \mathsf{MA} + \mathsf{Pd}_{2}\mathsf{Br}_{2}(\mathsf{H})_{2}(\mathsf{C}_{2}\mathsf{H}_{2})$

Рис.5. ИК-спектры системы PdBr₂-LiBr-CH₃CN до и после продувки CO $([PdBr_2] = 0.005 \text{ M}, [LiBr] = 0.01 \text{ M})$

Рис. 6. Электронные спектры системы PdBr₂-LiBr-CH₃CN до и после продувки CO ([PdBr₂] = 0.005 M, [LiBr] = 0.01 M)

После контакта с СО в системе присутствуют карбонильные комплексы палладия(II) и палладия(I).

Рис. 7. Эволюция ИК-спектров в ходе процесса карбонилирования ацетилена ([PdBr₂] = 0.05 M, [LiBr] = 0.1 M, [H₂O] ~ 0.1 M, P_{CO}:P_{C2H2} ~2.5) 1924 cm^{-1} - $\text{Pd}_2\text{Br}_2(\text{CO})_2(\text{C}_2\text{H}_2)$ 1864, 1780 см⁻¹ – янтарный ангидрид; 1852, 1780 ст⁻¹ – малеиновый ангидрид; 1736 см⁻¹ – янтарная и малеиновая кислоты

Рис. 8. Эволюция электронных спектров в ходе процесса карбонилирования ацетилена ([PdBr₂] = 0.05 M, [LiBr] = 0.1 M, [H₂O] ~ 0.1 M, P_{CO}:P_{C2H2} ~2.5)

 $(CO)Pd_2Br_2(H)(CH-CH_2)$ $(MA)Pd_2Br_2(H)_2 + CO$ ĊO OC

 $(CO)Pd_2Br_2(H)(CH-CH_2)$ + CO \rightarrow Pd₂Br₂(CO)₂ + \Re A ΟĊ ĊO

Схема 2. Механизм карбонилирования ацетилена [2]

Заключение

Таким образом, на основании полученных данных механизм карбонилирования удалось уточнить ацетилена (схема 2), а именно показать, что наиболее образования вероятный путь активного карбонильного комплекса палладия(I) связан с превращением димерного комплекса Pd_2Br_4 (схема 1), присутствующего в исходном растворе. Кроме того на основании спектральных данных удалось подтвердить существование карбонильного комплекса палладия(I) в каталитическом растворе в условиях процесса и обосновать предположение о координации его с ацетиленом (схема 2, комплекс $Pd_2Br_2(CO)_2(C_2H_2)$), а также комплекса Pd(I) и малеинового ангидрида (схема 2, комплекс (MA) $Pd_2Br_2(H)_2$).

Литература

1. Oshanina I.V., Kozlova A.P., Vorontsov E.V.and others // J. Mol. Catal. 1995. V.104. P.9.

2. Ошанина И.В. // автореф. дис. ... канд. хим. наук. М. МИТХТ 1993. 23 с. 3. Путин А.Ю., Кацман Е.А., Брук Л.Г. // Журнал физической химии. 2019. Т. 93. №2. C. 199 – 207.

4. Волченскова И.И., Яцимирский К.Б. // Журн. неорг. химии. 1973. Т.18. Вып. 7. С. 1875.