

Гибридные полимер-иммобилизованные наночастицы Pd и

Си: получение и каталитические свойства

Баймуратова Р.К.¹,Голубева Н.Д.¹, Давыдова Г.И.¹, Джардималиева Г.И.¹,Кнерельман Е.И.¹, Ляхович А.М.² ¹ ФГБУН Институт проблем химической физики РАН, г.Черноголовка, roz_baz@mail.ru ²ФГАОУ ВПО «Казанский (Приволжский) федеральный университет», г. Казань, alalam@mail.ru

Аннотация

Методы и материалы

Получены и охарактеризованы моно и биметаллические органо-неорганические нанокомпозиты на основе Pd и Cu ,обладающие развитыми межфазными поверхностями и мезопористой структурой.

Показана каталитическая активность полученных систем на примере реакции гидрирования циклогексена и окислительного карбонилирования метанола.

Введение

Прогресс в решении глобальных проблем во многом зависит от создания новых функциональных материалов. Основной проблемой в создании нанокомпозитных материалов является склонность наночастиц к агрегации, поэтому наночастицы закрепляют на поверхности носителей (оксидов металлов,цеолитов, углей и т.д.) или стабилизируют путем введения лигандов и т.п.

Важным преимуществом мультиметалических систем является возможность тонкого регулирования физико-химических параметров получаемого материала, изменяя типы металлов и их соотнощение Получение нанокомпозитов осуществлялось по ранее разработанному подходу[1] (рис.1.). В типичном эксперименте смесь расчетных количеств нитратов металла(Pd ;Cu или их смесь Pd/Cu 1-5масс.%/г носителя), акриламида и неорганического носителя (SiO₂,C, ZnO) растирали в агатовой ступке в боксе с инертной атмосферой до пастообразного состояния, промывали бензолом, эфиром и сушили в вакууме не менее 12 ч при 30°С. Затем термически восстанавливали Pd, Cu. Температурный режим выби-рали на основании ДСК и РФА данных. Гидрирование циклогексена и карбо-нилирование метанола проводили по метоликам описанной ранее [2].

Результаты и их обсуждение

Получаемые нанокомпозиты имеют развитую удельную поверхность и мезопористую структуру (табл. 1.). Важно, что формирование нанодисперсной фазы Pd⁰ происходит на стадии фронтальной полимеризации акриламидного комплекса Pd(II),а Cu⁰ при температурах выше 300 °C, что подтверждено данными РФА и РФЭС (рис 3.). Предварительные иссле-дования показали, что полученные композиты каталитически активны в реакциях гидрирования циклогексена и карбонилирования метанола (табл.2,рис.2.), причем биметаллические поли- (Cu+Pd)AAm/SiO₂ и поли- (Cu+Pd)AAm/ZnO обнаруживают селективность в отношении целевого продукта диметилкарбоната (ДМК).

Рис.1. Приготовление гетерометаллического полимер-

Рис 2. Зависимости скорости гидрирования циклогексена от степени превращения H, в повторных циклах катализатор – polyPdAAm(self PM)

Таблица 2.Выходы основных продуктов окислительного карбонилирование метанола (СО : воздух = 78:22)

Катализатор	ДМОМ, об.%	ДМК, об.%	
PolyPdAAm/SiO ₂	0,32	1,87	
PolyCuAAm/SiO ₂	0,17	0,53	
(Pd Cu) PolyAAm/ SiO ₂ 180	0,06	0,51	
(PdCu) Poly AAm/ SiO ₂ 300°C	0,14	0,51	
	In the second	- /	

Табуилами А. Фоска Санаве Санаве Санавиание и Санавических полимерных комплексов в отсутствие и

присутствии SIO	

inprio) i o i o i o j				
Образец	S _{уд} , м²/г	Объем пор, см³/г	Средний радиус пор, Å	
polyPdAAM	18.2	0.10	113.2	
polyCuAAm	30.1	0.16	106	
polyPdAAm/SiO ₂	146.8	0.28	37.8	
SiO ₂	238.7	0.41	34.3	
polyPd(Cu)AAm/SiO ₂ -180*	325.5	0.44	26.8	
polyPd(Cu)AAm/SiO ₂ -400*	336.5	0.42	25.2	
*Попучены при температурах 180 и 400 °С				

*Получены при температурах 180 и 400 °С

 Голубева Н.Д., Дюсеналин Б.К., Селенова Б.С., Помогайло С.И., Жармагамбетова А.К., Джардималиева Г.И., Помогайло А.Д. // Кинетика и катализ .2011. Т. 5. №2. С.250.

 Жармагамбетова А.К., Сейткалиева К.С., Талгатов Э.Т., Ауэзханова А.С., Джардималиева Г.И., Помогайло А.Д. Модифицированные полимерами нанесенные палладиевые катализаторы гидрирования ацетиленовых соединений //Кинетика и катализ. 2016. Т. 57. № 3.С. 362–369.