Фундаментальные основы комплексного легирования никелевых и кобальтовых суперсплавов Промежуточный отчёт по проекту № 13-03-00977 за 2013 год

Наибольший интерес к комплексному легированию никеля и кобальта связан с поиском новых составов жаропрочных и жаростойких сплавов на основе ГЦК твердого раствора. Современные суперсплавы содержат до 13 легирующих компонентов и характеризуются сочетанием высоких механических характеристик с устойчивостью к воздействию окислительных сред в интервале температур 650 – 1100 °C. Такой комплекс свойств обусловливает широкое применение этих сплавов при производстве турбин энергетических установок и авиационных двигателей. В настоящее время поиск новых жаропрочных и жаростойких легированных никелевых сплавов активно продолжается, и на сегодняшний день разрабатывается уже шестое поколение никелевых суперсплавов.

Физико-химический процесс, лежащий в основе технологии получения дисперсионно-твердеющих сплавов, это распад пересыщенного легирующими элементами твердого раствора на основе никеля и кобальта с образованием мелкодисперсных выделений упрочняющей фазы. По существу, получение таких сплавов включает три этапа: 1. Отливка сплавов определенного состава. 2. Гомогенизирующий отжиг при температурах 1350 – 1470 К. 3. Отжиг дисперсионного твердения сплава (900 – 1200 К). Все этапы, включая выбор исходного состава сплава, связаны со строением диаграммы фазовых равновесий, включающей все компоненты сплава. Основными легирующими элементами жаропрочных и жаростойких никелевых и кобальтовых сплавов являются переходные металлы V – VI групп и рений. Однако ввиду отсутствия информации о строении диаграмм фазовых равновесий многокомпонентных систем (> 3 компонентов) даже для основных легирующих компонентов затрудняет поиск оптимальных составов этих сплавов.

В связи с этим, исследование изотермических сечений диаграмм фазовых равновесий многокомпонентных систем, включающих фазовую область ГЦК твердый раствор/(ГЦК твердый раствор + упрочняющая фаза), является актуальной задачей.

В ходе проведенных в 2013 году исследований были получены следующие результаты

1. Комплексом методов физико-химического анализа с использованием метода графов установлены фазовые равновесия в двенадцати четырехкомпонентных системах никеля, рения и переходных металлов V – VI групп при 1375 К (рисунок 1):

1) в системе Ni-Re-V-Nb – σ +λ+β+γ; α+β+λ+γ; α+λ+β+μ; α+σ'+β+γ; σ'+Re+β+χ; σ'+α+β+χ; σ'+α+Re+γ; α+Re+σ'+χ;

2) в системе Ni-Re-V-Ta – σ + α + β + γ ; α + β + λ + σ ; α + λ + β + μ ; α + σ '+ β + γ ; σ '+Re+ β + χ ; σ '+ α + β + χ ; σ '+ α +Re+ γ ; α +Re+ σ '+ χ ;

3) в системе Ni-Re-W-V – σ +Re+ χ + γ ;

4) в системе Ni-Re-Cr-Nb – $\alpha + \mu + \lambda + \beta_{Nb}$; $\alpha + \chi + \lambda + \beta_{Nb}$; $\alpha + \sigma + \lambda + \beta_{Cr}$; $\alpha + \sigma + Re + \gamma$; $\alpha + \sigma + \gamma + \beta_{Cr}$; $\alpha + \sigma + \lambda + \chi$;

5) в системе Ni-Re-Mo-Nb – $\chi+\sigma+\alpha+\beta$; $\chi+\sigma+\alpha+Re$; $P+\sigma+\alpha+Re$; $P+\gamma+\alpha+Re$; $P+\gamma+\alpha+\delta$; $P+\delta+\alpha+\beta$; $P+\sigma+\alpha+\beta$;

6) в системе Ni-Re-W-Nb – α +Re+ χ + γ ; α + σ + χ + γ ; α + σ + χ + β ; α + σ + β + γ ;

7) в системе Ni-Re-Cr-Ta – $\alpha+\mu+\lambda+\beta_{Ta}$; NiTa₂+ $\mu+\lambda+\beta_{Ta}$; $\alpha+\mu+\lambda+Ni_2Ta$; $\alpha+\beta_{Cr}+\beta_{Ta}+\lambda$; $\alpha+\beta_{Cr}+\beta_{Ta}+\sigma$; $\sigma+\alpha+\beta_{Cr}+\gamma$; $\sigma+\alpha+\beta_{Ta}+\chi$; $\sigma+\alpha+Re+\chi$; $\sigma+\alpha+Re+\gamma$;

8) в системе Ni-Re-Mo-Ta – α +Ni₂Ta+ β + μ ; α +P+Re+ γ ; α +P+ δ + γ ; α +P+ δ + β ; α +P+ σ + β ; α +P+ σ +Re; α + σ + β + χ ; α + σ +Re+ χ ;

9) в системе Ni-Re-W-Ta – α + σ + β + χ ; α + σ + β + γ ; α + σ + γ + χ ; α + γ + χ +Re; α + μ + β +Ni₂Ta;

10) в системе Ni-Re-Cr-W – χ +Re+ σ + γ ;

11) в системе Ni-Re-Mo-W – χ +Re+ σ + γ ; *P*+Re+ σ + γ ; *P*+ β + σ + γ ; *P*+ β + δ + γ . 12) В системе Ni-Re-Nb-Ta при 1375 К четырехфазные равновесия не образуются; ограняющие данную систему трехкомпонентные системы образуют при 1375 К пять областей трехфазных равновесий: Re+ γ + α , μ + β +Ni₂Ta, α + χ + β , α + μ + β и Re+ χ + α .

2. С использованием метода графов осуществлена полиэдрация изотермических сечений пяти-, шести- и семикомпонентных диаграмм фазовых равновесий, входящих в восьмикомпонентную систему Ni-Re-V-Nb-Ta-Cr-Mo-W и установлено существование в данной восьмикомпонентной системе при 1375 К восьми областей пятифазных равновесий (Таблица 1): 1) σ + α + β + χ + λ ; 2) σ + α + β + χ + λ ; 3) P+ β + δ + γ + α ; 4) P+ β + σ + γ + α ; 5) P+Re+ σ + γ + α ; 6) χ + σ + α +Re+ γ ; 7) α + μ + β + λ +Ni₂Ta; 8) σ + α + β _{Cr}+ β _{Nb,Ta,W}+ λ .

В шестикомпонентных системах все пятифазные равновесия рекомбинируют.

Установлено, что шести-, семи- и восьмифазные равновесия в восьмикомпонентной системе Ni-Re-V-Nb-Ta-Cr-Mo-W при 1375 К не образуются.

3. Показано, что никелевый твердый раствор в восьмикомпонентной системе Ni-Re-V-Nb-Ta-Cr-Mo-W при 1375 К находится в равновесии с фазами α, β, δ, λ, σ, χ, *P* и твердым раствором на основе рения.

Ni-Re-V-Nb	Ni-Re-V-Ta	Ni-Re-Nb-Cr	Ni-Re-Nb-Mo
$\sigma + \beta + \lambda + \gamma \qquad \alpha + \beta + \lambda + \mu$ $\beta + \lambda + \gamma \qquad \alpha + \beta + \lambda$ $\alpha + \beta + \gamma \qquad \alpha + \beta + \lambda$ $\alpha + \beta + \gamma \qquad \alpha + \beta + \lambda$ $\alpha + \sigma' + Re + \gamma \qquad \alpha + \sigma' + \beta + \gamma$ $\alpha + \sigma' + Re + \chi \qquad \alpha + \sigma' + \beta + \chi$ $\sigma' + Re + \chi \qquad \sigma' + \beta + \chi$ $\sigma' + Re + \chi \qquad \sigma' + \beta + \chi$	$a+\beta+\lambda+\mu$ $a+\beta+\lambda+\sigma$ $a+\beta+\lambda+\sigma$ $a+\beta+\gamma$ $a+\sigma+\beta+\gamma$ $a+\sigma+\beta+\gamma$ $a+\sigma+\beta+\gamma$ $a+\sigma+\beta+\gamma$ $a+\sigma+\beta+\gamma$ $a+\sigma+\beta+\gamma$ $a+\sigma+\beta+\chi$ $a+\sigma+\beta+\chi$ $\sigma+\beta+\chi$ $\sigma+\beta+\chi$ $\sigma+\beta+\chi$	$\alpha + \lambda + \beta Nb \qquad \alpha + \lambda + \beta Nb \qquad \alpha + \lambda + \beta Nb \qquad \alpha + \lambda + \lambda + \beta Nb \qquad \alpha + \lambda + \lambda + \beta Nb \qquad \alpha + \alpha + \alpha + \lambda + \lambda + \alpha + \sigma + \lambda + \beta cr \qquad \alpha + \sigma + \gamma + \beta cr \qquad \alpha + \sigma + \gamma + \beta cr \qquad \alpha + \sigma + \gamma + \beta cr \qquad \alpha + \sigma + \gamma + \beta cr \qquad \alpha + \sigma + Re + \gamma$	$P+\gamma+\alpha+\delta$ $P+\gamma+\alpha+Re$ $P+\alpha+Re$ $P+\alpha+Re$ $P+\alpha+Re$ $P+\alpha+Re$ $P+\alpha+\alpha+\beta$ $\sigma+\alpha+Re$ $\alpha+\alpha+Re$ $\gamma+\alpha+\alpha+Re$ $\gamma+\alpha+\alpha+\beta$
Ni-Re-Nb-W	Ni-Re-Ta-Cr	Ni-Re-Ta-Mo	Ni-Re-Ta-W
$\alpha + \gamma + \chi + Re$ $\alpha + \gamma + \chi$ $\alpha + \sigma + \beta + \chi$ $\alpha + \sigma + \beta + \chi$	$\begin{array}{c} \alpha + \mu + \lambda + Ni \overline{\mu} \\ \alpha + \mu + \lambda \\ \alpha + \mu + \lambda \\ \alpha + \mu + \lambda + \beta T_{a} \\ \alpha + \lambda + \beta T_{a} \\ \alpha + \beta c_{r} + \beta T_{a} \\ \alpha + \beta c_{r} + \beta T_{a} + \lambda \\ \alpha + \beta c_{r} + \beta T_{a} + \lambda \\ \alpha + \beta c_{r} + \beta T_{a} + \alpha \\ \sigma + \alpha + \beta c_{r} \\ \sigma + \alpha + \beta$	$P+\gamma+\alpha+\delta$ $P+\gamma+\alpha+Re$ $P+\alpha+Re$ $P+\alpha+Re$ $P+\sigma+\alpha+Re$ $P+\sigma+\alpha+\beta$ $P+\sigma+\alpha+\beta$ $P+\sigma+\alpha+\beta$ $P+\sigma+\alpha+\beta$ $\sigma+\alpha+Re$ $\chi+\sigma+\alpha+Re$ $\chi+\sigma+\alpha+\beta$	$a+\sigma+\gamma + \chi + Re$ $a+\sigma+\gamma + \chi$ $a+\sigma+\mu$
Ni-Re-Mo-W	Ni-Re-V-W	Ni-Re-Cr-W	Ni-Re-Nb-Ta
$Re + \sigma + \gamma$ $P + \sigma + \gamma$ $P + \sigma + \gamma$ $P + \beta + \gamma$ $P + \beta + \delta + \gamma$	σ + λ+Re+γ ●	σ +λ +Re+γ ●	(не образуются)

Рисунок 1. Графы взаимосвязи четырёхфазных равновесий четырёхкомпонентных систем

Таблица 1. Пятифазные равновесия реализующиеся в восьмикомпонентной системе Ni-Re-V-Nb-Ta-Cr-Mo-W при 1375 К.

Пятифазное равновесие	Пятикомпонентные системы		
$\sigma + \alpha + \lambda + \gamma + \beta$	Ni-Re-V-Nb-Ta, Ni-V-Nb-Ta-Cr, Ni-V-Nb-Ta-Mo, Ni-V-Nb-Ta-W		
$\sigma + \alpha + \lambda + \chi + \beta$	Ni-Re-V-Nb-Cr, Ni-Re-Nb-Ta-Cr, Ni-Re-Nb-Cr-Mo, Ni-Re-Nb-Cr-W		
$P+\alpha+\delta+\gamma+\beta$	Ni-Re-V-Nb-Mo, Ni-Re-V-Ta-Mo,Ni-Re-Nb-Mo-W, Ni-Re-Ta-Mo-W, Ni-V-Nb-Cr-Mo, Ni-V-Ta-Cr-Mo, Ni-Nb-Cr-Mo-W, Ni-Ta-Cr-Mo-W		
$P+\alpha+\sigma+\gamma+\beta$	Ni-Re-V-Nb-Mo, Ni-Re-V-Ta-Mo, Ni-Re-Nb-Mo-W, Ni-Re-Ta-Mo-W, Ni-V-Nb-Cr-Mo, Ni-V-Ta-Cr-Mo, Ni-Nb-Cr-Mo-W, Ni-Ta-Cr-Mo-W		
P +Re+ α + σ + γ	Ni-Re-V-Nb-Mo, Ni-Re-V-Ta-Mo, Ni-Re-Nb-Cr-Mo, Ni-Re-Nb-Mo-W, Ni-Re-Ta-Cr-Mo, Ni-Re-Ta-Mo-W		
χ +Re+ α + σ + γ	Ni-Re-V-Nb-W, Ni-Re-V-Ta-W, Ni-Re-Nb-Cr-W, Ni-Re-Nb-Mo-W, Ni-Re-Ta-Cr-W, Ni-Re-Ta-Mo-W		
$\sigma {+} \alpha {+} \lambda {+} \beta_{\text{Cr}} {+} \beta_{\text{Nb,Ta,W}}$	Ni-Re-Nb-Ta-Cr, Ni-Re-Nb-Cr-W		
$\alpha + \lambda + \mu + \beta + Ni_2Ta$	Ni-Re-Ta-Cr-Mo, Ni-Re-Ta-Cr-W, Ni-V-Ta-Cr-Mo, Ni-V-Ta-Cr-W, Ni-Nb-Ta-Cr-Mo, Ni-Nb-Ta-Cr-W		

Экспериментально растворимость 4. установлена максимальная легирующих компонентов в твердом растворе на основе никеля в пятикомпонентной системе Ni-Re-Mo-Nb-Cr при 1375 и 1200 К и осуществлено математическое описание поверхности у-твердого никелевого раствора указанной пятикомпонентной системы функцией, выражающей зависимость концентрации никеля (Х_{Ni}) от значений относительных концентраций легирующих компонентов сплава $Z_i = X_i / (1 - X_{Ni}) (X_i - X_{Ni})$ мольная доля *і* компонента, X_{Ni} – мольная доля никеля), для каждой из поверхностей раздела $\gamma/(\gamma+Re)$, $\gamma/(\gamma+\beta)$, $\gamma/(\gamma+\sigma)$, $\gamma/(\gamma+\sigma)$, $\gamma/(\gamma+\alpha)$, $\gamma/(\gamma+\alpha)$ при 1375 и 1200 К и ү/(ү+µ) при 1200 К. Уравнение поверхности насыщенного никелевого твердого раствора для каждой фазовой границы ү/(ү+Ф) пятикомпонентной системы Ni-Re-Nb-Cr-Mo имеет вид:

 $X_{\text{Ni}} = Z_{\text{Re}}^* A_{\text{Re}} + Z_{\text{Nb}}^* A_{\text{Nb}} + Z_{\text{Cr}}^* A_{\text{Cr}} + Z_{\text{Mo}}^* A_{\text{Mo}} + Z_{\text{Re}}^* Z_{\text{Nb}}^* A_{\text{ReNb}} + Z_{\text{Re}}^* Z_{\text{Cr}}^* A_{\text{ReCr}} + Z_{\text{Re}}^* Z_{\text{Mo}}^* A_{\text{ReMo}} + Z_{\text{Nb}}^* Z_{\text{Cr}}^* A_{\text{NbCr}} + Z_{\text{Nb}}^* Z_{\text{Mo}}^* A_{\text{NbMo}} + Z_{\text{Cr}}^* Z_{\text{Mo}}^* A_{\text{CrMo}} + Z_{\text{Re}}^* Z_{\text{Re}}^* A_{\text{ReCr}} + Z_{\text{Re}}^* Z_{\text{Mo}}^* A_{\text{ReMo}} + Z_{\text{Nb}}^* Z_{\text{Cr}}^* A_{\text{NbCr}} + Z_{\text{Nb}}^* Z_{\text{Mo}}^* A_{\text{NbMo}} + Z_{\text{Cr}}^* Z_{\text{Mo}}^* A_{\text{CrMo}} + Z_{\text{Re}}^* Z_{\text{Nb}}^* A_{\text{Re}} + Z_{\text{Re}}^* Z_{\text{Mo}}^* A_{\text{Re}} + Z_{\text{Re}}^* Z_{\text{Mo}} + Z_{\text{R$

где A_{Me} – растворимость Ni в никелевом твёрдом растворе в двухкомпонентной системе Ni-Me, A_{Me1Me2} – эмпирический коэффициент. Причем Z_{Re}+Z_{Nb}+Z_{Cr}+Z_{Mo}= 1. Полученные результаты (рисунок 2 и 3) определяют максимальное и минимальное содержание легирующих элементов в никелевых сплавах, способных к дисперсионному твердению.

5. Осуществлено экспериментальное построение изотермического сечения диаграммы фазовых равновесий трехкомпонентной системы Co-Cr-Mo при 1375 К. По результатам исследования (рисунок 4) построено изотермическое сечение диаграммы фазовых равновесий системы Co-Cr-Mo при 1375 К, в которой установлены пять трехфазных равновесий:

$\varepsilon_{Co} + \gamma_{Co} + \mu, \ \gamma_{Co} + \mu + R, \ \gamma_{Co} + \sigma + R, \ \beta + \mu + R \ и \ \beta + \sigma + R.$

Рисунок 4. Изотермическое сечение диаграммы фазовых равновесий системы Со-Сг-Мо при 1375 К.

Рисунок 2. Графическое представление проекции поверхности никелевого твердого раствора в пятикомпонентной системе Ni-Re-Nb-Cr-Mo при 1375 К на тетраэдр составов, выраженных в относительных концентрациях легирующих компонентов: а) развертка тетраэдра, б) тетраэдр с выделенной границей γ/(γ+α).

Рисунок 3. Графическое представление проекции поверхности никелевого твердого раствора в пятикомпонентной системе Ni-Re-Nb-Cr-Mo при 1200 К на тетраэдр составов, выраженных в относительных концентрациях легирующих компонентов: а) развертка тетраэдра, б) тетраэдр с выделенной границей γ/(γ+α).