УДК 577.21

Микрочиповые системы для молекулярно-генетического анализа

М.Н. Сляднев

МАКСИМ НИКОЛАЕВИЧ СЛЯДНЕВ — кандидат химических наук, старший научный сотрудник НИИ Химии Санкт-Петербургского университета, руководитель отдела группы компаний «Люмэкс». Область научных интересов: микрочипы, микрофлюидика, микрочиповые технологии, молекулярно-генетический анализ, полиамидные цепные реакции.

192029 Санкт-Петербург, просп. Обуховской обороны, д. 70, корп. 2, Лит. «Е», тел. (812)718-68-61, факс (812)718-68-65, E-mail merlin_pro@lumex.ru

Введение

Достижения в области технологии изготовления микроэлектромеханических систем (МЭМС; Micro Elecro Mechanical Systems MEMS) привели к активным работам по миниатюризации аналитических систем. В течение последних десятилетий по МЭМС-технологии были созданы миниатюризованные функциональные устройства, предназначаемые для применения в биологии и медицине. Эти устройства выполняют те же функции, что и традиционно применяемые аналитические средства, но с использованием меньших количеств реактивов, при этом сокращается продолжительность анализа и снижается его стоимость, а также расход энергии. Основным элементом такой микроаналитической системы является химический микрочип - миниатюрное устройство планарной геометрии с разветвленной сетью микроканалов и микрореакторов, изготавливаемых по МЭМС-технологии из различных материалов (стекло, кварц, кремний, полимеры, а также металлы и сплавы). Площадь микрочипа составляет несколько квадратных сантиметров, а линейные размеры по двум измерениям обычно находятся в диапазоне от сотен нанометров до сотен микрометров.

Преимущества химических микрочипов были продемонстрированы при выполнении анализов в сочетании с электрокинетическими и хроматографическими методами разделения, методами жидкостно-жидкостной и твердофазной экстракции, электрохимическими методами, а также биохимическими и иммуноферментными методами [1—3]. Различные аспекты аналитических приложений микрочиповых систем обсуждаются в ряде обзоров и монографий [4—10].

Особый интерес исследователи проявляют к микрочиповым системам, которые осуществляют молекулярно-генетический анализ нуклеиновых кислот (ДНК и РНК), в частности, с помощью полимеразной цепной реакции [11]. В настоящее время активно разрабатываются новые мстоды, основанные на применении микрочиповых аналитических систем, которые обладают принципиально новыми преимуществами [12, 13]. К числу таких преимуществ относятся высокое быстродействие, высокие скорости нагрева и охлаждения реакционной смеси, низкое потребление дорогостоящих реактивов, а также потенциальная возможность интеграции нескольких стадий молекулярно-генетического анализа в едином микрочине. В настоящем обзоре рассмотрены работы, в которых показаны основные преимущества микрочиповых аналитических систем молекулярно-генетического анализа, а также современные достижения в этой области.

Полимеразная цепная реакция

Полимеразная цепная реакция (ПЦР), за открытие которой К. Муллису была присуждена Нобелевская премия в 1993 г., является методом ферментативного синтеза определенного участка ДНК с заданной нуклеотидной последовательностью.

ПЦР проводится в условиях повторяющихся температурных циклов синтеза участка ДНК, что приводит к геометрическому росту (амплификации) количества копий этого участка ДНК (ампликонов) в растворе [11, 14]. Путем изменения в определенном порядке температуры реакционной смеси (температурно-временной режим амплификации) осуществляется управление происходящими физико-химическими процессами (рис. 1). При повышении температуры до 95 °С двухцепочечная молекула ДНК диссоциирует на две одноцепочечные (стадия денатурации). Эти нити выступают как матрицы для синтеза комплементарных цепочек. При понижении температуры до 53-68 °С (стадия гибридизации) к комплементарным участкам одноцепочечных молекул ДНК присоединяются короткие олигонуклеотиды (праймеры), которые выполняют роль затравки для синтеза новой цепочки ДНК. Далее температуру реакционной смеси повышают до 72 °С ---- оптимальной температуры для ферментативного синтеза комплементарной нуклеотидной последовательности (элонгации). В результате одного такого цикла число фрагментов ДНК удваивается (образуются ампликоны), при многократном повторении таких циклов происходит рост их количества в геометрической прогрессии.

Для проведения ПЦР в растворе номимо молекул ДНК, содержащих интересующий участок, должны

Рис. 1. Схематичное изображение процессов, происходящих при одном температурном цикле полимеразной цепной реакции.

Значком Р схематично отмечен фермент – полимераза.

присутствовать следующие компоненты: фермент ДНКполимераза, осуществляющий синтез комплементарной последовательности, ионы магния Mg^{2+} , которые являются коферментом ДНК-полимеразы, дезоксирибонуклеозидтрифосфаты dATP, dGTP, dCTP, dTTP, которые участвуют в синтезе ампликонов, и два олигонуклеотида-праймера, которые ограничивают интересующий фрагмент на разных нитях ДНК [11, 14].

Среди методов детектирования ампликонов, синтезированных в результате ПЦР, наиболее распространены флуоресцентные методы. Их можно разделить на несколько групп в зависимости от механизма возникновения флуоресценции в растворе [11]. К первой группе относятся методы, использующие интеркалирующие

красители (этидийбромид, SYBR Green I и BEBO), которые не флуоресцируют в несвязанном виде, но при взаимодействии с двухцепочечной молекулой ДНК приобретают способность к флуоресценции [11]. Анализ продуктов ПЦР с помощью подобных красителей может проводиться после их разделения методом гельэлектрофореза по окончании реакции по результирующей флуоресценции, --- так называемый метод «конечной точки» — или непосредственно в ходе реакции, т.е. в режиме реального времени (рис. 2). Из этих методов только метод детектирования ПЦР в режиме реального времени (ПЦР-РВ) позволяет получать количественные данные о содержании ДНК в пробе путем определения «порогового цикла» по кинетической кривой ПЦР-РВ (см. рис. 2*a*) и построения градуировочной зависимости [11].

Ко второй группе относятся методы с использованием флуоресцентно-меченых олигонуклеотидов, получившие устоявшиеся коммерческие названия, такие как TaqMan® зонды, «молекулярные маячки» (molecular beacons), гибридизационные зонды. Детектирование молекул ДНК с помощью таких зондов осуществляется в режиме реального времени, при этом регистрируется изменение интенсивности флуоресценции, которое связано с количеством синтезированных молекул ДНК. Флуоресцентно-меченые зонды содержат олигонуклеотидную последовательность, комплементарную участку в молекуле ампликона, поэтому в отличие от интеркалирующих красителей они являются селективными индикаторами именно на нуклеотидную последовательность амплифицируемого участка ДНК.

Одним из важнейших составляющих системы ПЦР-анализатора является блок термоциклирования, обеспечивающий циклическое изменение температуры. Такие характеристики, как скорость изменения температуры, равномерность распределения температуры внутри реактора и скорость установления этого равновесия, точность поддержания температуры и равномерность распределения температуры и равномерность распределения температуры по нескольким реакторам, в итоге определяют специфичность ПЦР, быстродействие анализа, правильность и воспроизводимость результатов [14].

Улучшение аналитических характеристик ПЦРметода, традиционно проводимого в пластиковых пробирках и в планшетах, достигло предела, который, однако, не удовлетворяет современным требованиям к

Рис. 2. Результаты ПЦР-анализа при использовании различных методов детектирования амиликонов:

а — ПЦР в режиме реального времени при различных концентрациях исходной ДНК;

б гель-электрофорез продуктов ПЦР: дорожка 1 – отрицательный образец,

2 положительный образец, специфический фрагмент длиной 150 п.о., 3 -- стандартный раствор, содержащий ДНК известного размера

Существующие ПЦР-анализаторы анализу. имеют низкие скорости термоциклирования 2-5 °С/с [11], создают неравномерное распределение температур внутри реактора, что увеличивает время проведения ПЦР до 1,5-2 ч, требуют большого расхода реагентов 20-50 мкл, приводящего к высокой стоимости анализа [12, 13]. Микрочиповые аналитические системы в принципе лишены этих недостатков благодаря низкой теплоёмкости микрочипов (равной произведению массы микрочипа на удельную массовую теплоемкость материла, из которого они сделаны) и малого объема микрореакторов, 0,1---1 мкл, что позволяет достичь высоких скоростей нагрева, 175 °С/с и охлаждения, 125 °С/с и выполнить 40 циклов ПЦР менее чем за 6 мин [15].

ПЦР-анализатор с большим быстродействием, в котором в качестве микрореакторов используются стеклянные капилляры, был впервые предложен К. Виттвером с соавт. в 1990 г. [16]. В 1993 г. группой А. Нортропа был продемонстрирован ПЦР-микрочип, вы-

полненный из кремния [17]. После этих пионерских работ наблюдался экспоненциальный рост количества публикаций, посвященных микрочиповым аналитическим системам (рис. 3). К настоящему времени появилось значительное число научных групп, работающих в области создания миниатюризованных ПЦР-систем.

Рис. 3. Динамика роста количества публикаций по микрочиповым ПЦР-системам.

Результаты поиска англоязычных статей в базе данных PubMed, согласно указанным в легенде запросам. Публикации за 2010 год включены до 08.2010

Предложены различные материалы для изготовления подложек чипов, разработаны топологии микрочипов, с помощью этих систем был проведен ПЦР-анализ различных объектов.

В табл. 1 приведены критерии выбора наиболее важных компонентов для микрочиповых аналитических ПЦР-систем.

Таблица І

Критерии выбора компонентов для микрочиповых аналитических ПЦР-систем

Компонент	Варианты выбора	Критерии				
Подложка микро- чипа	Материал: Si, SiO ₂ , стекло, металл, пла- стик.	Теплопроводность, электропроводность, оптические свой- ства, совместимость материала и покрытий с ПЦР. Техно-				
	Методы изготовления, методы пассивации поверхности материала	логичность, стоимость изготовления микрочипа и его пассивации, возможность масштабного производства, одноразовое применение микрочипа				
Микрореакторы	Размеры и формы, топология, взаимное расположение	Соотношение площади поверхности микрореактора к его объему. Взаимное влияние между микрореакторами: кросс- контаминация, смешивание, термическая изоляция, пара- зитные сигналы флуоресценции				
Покровный слой	Материал: стекло, пластик, слой масла	Теплопроводность, оптические свойства, совместимость материала с ПЦР, возможность иммобилизации реактивов, извлечения продуктов ПЦР				
Система нагрева и охлаждения	Принцип действия: контактный, бескон- тактный, эффект Пельтье, эффект Джоуля	Скорость нагрева и охлаждения, равномерность темпера туры. Технологичность изготовления, стоимость микрочи па с интегрированными нагревателями и датчиками, точ ность управления температурой				
	Размещение: внешнее, интегрированное					
Термодатчик	Принцип действия: контактный, бескон- тактный. Материал, размеры, расположе- ние	Точность измерения температуры, быстродействие, со- вместимость материала датчика с ПЦР, технологичность изготовления				
Система детектирования	Принцип действия: флуоресценция, элек- трохимический. Электрофоретическое раз- деление, метод по «конечной точке», в режиме реального времени	Чувствительность, быстродействие, возможность миниа- тюризации, технологичность изготовления интегрирован- ных систем детектирования				

Активность исследований, направленных на разработку микрочиновых аналитических устройств, обусловлена необходимостью решения комплекса вопросов, которые возникают при переносе методологии ПЦР и особенно при ПЦР в режиме реального времени в микрочиновый формат.

Материалы и технологии для изготовления микрочипов. Пассивация поверхности

Существует множество материалов, из которых может быть изготовлен микрочип, предназначенный для проведения ПЦР (табл. 2, подробный анализ и обзор материалов и технологий для изготовления микрочипов приведен в монографиях и обзорах [5, 12, 13]).

На начальных этапах разработки микрочиповых ПЦР-систем наиболее часто использовались кремний [18—23], кварц и стекло [24—27]. Выбор этих материалов был обусловлен прежде всего имевшимся опытом производства и отлаженными технологиями их обработки в микроэлектронной промышленности. Важно, что кремний обладает хорошей теплопроводностью, благодаря этому достигаются высокие скорости нагрева и охлаждения реакционной смеси в ходе ПЦР. Одни из первых микрочинов для проведения ПЦР были выполнены из кремния с покрытием — покровной пластиной из стекла. Для нагрева и охлаждения микрочипа использовались внешние элементы Пельтье [28, 29]. С развитием МЭМС-технологий появилась возможность интегрировать в кремниевые микрочины нагревательные элементы в виде резистивных металлических элементов и платиновые пленочные термодатчики [18, 19]. Микрочипы с интегрированными нагревателями и термодатчиками достаточно дороги, однако при их использовании потребляемая мощность снижается до единиц ватт на микрореактор [30], что позволяет создать портативный ПЦР-анализатор, работающий от аккумулятор-

Таблица 2

Материал	Теплопро- водность, Вт/(м•К)	Удельная теплоемкость, Дж/(кг·К)	Технология изготовления	Достоинства	Недостатки
Кремний	150	700	Фотолитография, глубо- кое реактивно-ионное травление, анизотроп- ное и изотропное жид- костное химическое травление.	Высокая теплопро- водность. Технологии изго- товления освоены промышленностью	Непрозрачен в УФ и видимой областях спек- тра. Высокая стоимость изготовления. Взаимо- действие с компонента- ми ПЦР, ингибирование реакции
			Электрохимическое травление, лазерная абляция		
Кварц	1,4	1000	Фотолитография, изо- тропное жидкостное химическое травление	Оптически прозрач- ные в УФ (кварц) и вилимой области	Невысокая теплопро- водность. Высокая стоимость изготовле- ния. Адсорбция заря- женных макромолекул на поверхности
Стекло	1,1	750			
(пирекс)			Электрохимическое травление, лазерная абляция	Диэлектрики	
Полидиметил- силоксан	0,18	1460	Лазерная абляция, им- принтинг (ПММА,	Оптически прозрач- ны в видимой облас-	Низкая теплопровод- ность.
(ПДМС) Полиметиме-	0,20	1446	поликароонат). Литье под давлением (ПММА).	ти спектра. Диэлектрики. Со- вместимы с ПЦР.	Не выдерживают повы- шенных температур и обработки в сильных
(ПММА)			Полимеризация жидких	Недорогое изготов-	кислотах, органических растворителях
Поликарбонат	0,20	1350	эластомеров на матрице (ПДМС)	ление; возможность одноразового ис- пользования	
Нержавеющая сталь	16	500	Электрохимическое травление	Недорогое изготов- ление; возможность одноразового ис- пользования	Взаимодействие с ком- понентами ПЦР, инги- бирование реакции
Алюминий	250	900	Штамповка	Недорогое изготов- ление; возможность одноразового ис- пользования	Взаимодействие с ком- понентами ПЦР, инги- бирование реакции

Характеристики материалов, используемых при изготовлении микрочипов для проведения ПЦР

ных батарей, пригодный для эксплуатации в полевых условиях и для обследования пациента (в медицинской практике).

Низкий уровень фоновой флуоресценции кремния также способствовал его использованию в ПЦРсистемах, работающих в режиме реального времени, в которых регистрация флуоресценции из микрореакторов, как правило, проводится через покровную пластину из стекла [10, 31, 32] или слой минерального масла [33].

Кварц и различные марки стекла применяются для изготовления ПЦР-микрочипов в основном для обеспечения совместимости с последующим электрофоретическим разделением продуктов ПЦР, поскольку эти материалы по сравнению с кремнием обладают большим удельным электросопротивлением. Подобные микрочипы из стекла были продемонстрированы группой Рамзея [34] и использованы для проведения ПЦР с электрофоретическим разделением полученных в результате реакции фрагментов [35].

В последние годы в связи с развитием МЭМСтехнологий, которые позволяют в серийном масштабе изготавливать микроструктуры и из других материалов, наметился интерес исследователей к более дешевым полимерным материалам [36] и металлам [33, 37]. Так, для изготовления ПЦР-микрочипов с успехом были использованы полидиметилсилоксан [36, 38, 39], поликарбонат [40] и полиметилметакрилат [41-43]. В работе [44] из листового полиимида толщиной 150 мкм методом лазерной абляции формировали две пластины со сквозными структурами: первая содержала отверстия для доступа к каналам, вторая — каналы и микрореакторы. Первую и вторую пластины склеивали между собой, и к этой сборке со стороны второй пластины присоединяли третью сплошную пластину для образования замкнутого микрообъема — получался трехслойный микрочип, который термоциклировался под действием ИК излучения [44]. Микрофлюидный ПЦР-чип из полидимстилсилоксана с микрореакторами емкостью 12 нл был продемонстрирован в работе [39]. В работе [38] был разработан мультимикрореакторный чип из полидиметилсилоксана, в который ввод образцов осуществляется за счет газопроницаемости материала, при этом достигается надежное заполнение микрореакторов без использования насосов и исключается образование воздушных пузырьков. Этот микрочип был с успехом применен для амплификации гена β-актина человека, в будущем он может быть использован для диагностических целей.

Дальнейшее увеличение производительности ПЦРанализатора было достигнуто в результате применения микрофлюидных технологий для ввода проб [45]. Описан химический микрочип, имеющий микроканалы для ввода проб и пневматические каналы для разделения микрореакторов, который позволяет проводить количественный анализ до 48 проб на наличие 770 генетических элементов [46], что особенно востребовано в генетическом анализе. Микрочип изготавливается из полидиметилсилоксана и не позволяет достигнуть высоких скоростей термоциклирования, однако этот недостаток компенсируется возможностью одновременно проводить большое число реакций.

Коммерческие компании «BioTrove» выпускают микрочины с микрореакторами емкостью 33 нл, имеющие сквозные отверстия [37]. Микрореактор изготавливается из нержавеющей стали N-18 с покрытием ковалентно пришитым полиэтиленгликолем для предотвращения ингибирования ПЦР материалом микрочипа, а также для придания гидрофильных свойств. Ввод проб осуществляется через пластиковый наконечник от стандартного дозатора, который касается поверхности микрореактора, и за счет капиллярных сил происходит заполнение микрореактора анализируемым раствором. Несмотря на то, что микрочии изготовлен из нержавеющей стали, теплопроводность которой сопоставима с теплопроводностью кремния и потенциально позволяет достигнуть высоких скоростей термоциклирования, предложенный метод герметизации приводит к большой теплоемкости нагреваемого элемента и не обеспечивает высоких скоростей нагрева и охлаждения.

Описанная система позволяет проводить производительный скрининг нескольких проб на присутствие ряда генетических элементов. Так, ПЦР-методом в режиме реального времени можно анализировать от 48 проб на присутствие 64 участков ДНК, до 192 проб на присутствие 16 участков ДНК, в течение 2,5 ч.

В работе [33] описано использование микрочипов с открытыми микрореакторами емкостью 1—2 мкл, изготовленных из алюминиевого сплава, позволяющих проводить анализ методом ПЦР-РВ. Применение алюминия для изготовления подобных микрочипов методом штамповки значительно снижает их себестоимость при серийном производстве, при этом термические характеристики остаются высокими, а за счет специальных покрытий достигается их совместимость с ПЦР. С помощью такого микрочипа ПЦР была проведена за 20 мин с высокой эффективностью, что указывает на отсутствие ингибирования реакции [33].

При большем соотношении площади поверхности микрореактора к его объему сказывается значительное влияние поверхностных процессов на прохождение ПЦР [12]. Вследствие сорбции компонентов ПЦР-смеси и деактивации полимеразы изменяются их концентрации и активности в растворе и снижается эффективность реакции или она полностью ингибируется. Поэтому особое внимание исследователей направлено на разработку простых и надежных методов модификации поверхности материалов, из которых изготавливается микрочип.

Несмотря на низкую теплопроводность полимеров, которая не позволяет достигнуть высоких скоростей термоциклирования, именно благодаря инертности полимерных материалов по отношению к компонентам ПЦР-смеси (обычно не требуется модифицирование их поверхности) подобные микрочипы получили широкое распространение [47].

Для изготовления микрочинов из кремния или кремнийсодержащих материалов необходимо модифицирование их поверхности, так как эти материалы сорбируют компоненты ПЦР-смеси [48]. Описаны [12, 47] два типа модификаторов: перманентные и динамические модификаторы.

Механизм действия динамических модификаторов основан на конкурснтной сорбции компонентов ПЦРсмеси и модификатора, находящегося в растворе. В качестве динамических модификаторов предлагается использовать бычий сывороточный альбумин [49], полиэтиленгликоль [50], глицерин [18, 51], формамид [18, 51], поливинилпирролидон [28], Твин 20 [28].

Перманентные модификаторы наносятся на поверхность перед проведением ПЦР, они создают инертное покрытие, которое предотвращает сорбцию компонентов ПЦР-смеси на поверхности микрореактора [29]. В качестве перманентных модификаторов обычно используются органические соединения, которые образуют гидрофобное покрытие. Примерами таких перманентных модификаторов для микрочинов с закрытыми микрореакторами являются диметилдихлорсилан [52], «SigmaCoat» [28], триметилхлорсилан [28]. В работах [15, 53] поверхность стеклянной пластины обрабатывали гидрофобным и олеофобным перфторалкосисиланом, в результате был создан микрочии с открытыми «виртуальными» микрореакторами (virtual reaction chamber, VRC). В подобном микрочине ПЦР осуществляется в сферической капле водной фазы, помещенной в полусферическую каплю масла, расположенную на поверхности модифицированной стеклянной пластины.

В случаях, когда вследствие гидрофобности покрытия не достигается достаточный термический контакт реакционной системы с поверхностью микрореактора, на поверхности создают гидрофильный слой из SiO₂ [18, 54], бычьего сывороточного альбумина [40, 55, 56], 3-глицидопропилтриэтоксисилана [57], полиэтиленгликоля [51], что обеспечивает смачивание ПЦР-смесью поверхности микрореактора [58]. В работе [59] удалось создать на поверхности микрореактора гидрофильные и гидрофобные зоны, что позволяет проводить ПЦР на плоской поверхности, при этом растекание ПЦР-смеси в пределах гидрофильной реакционной зоны ограничивается гидрофобной поверхностью снаружи этой зоны.

Отметим, что предложено множество решений по модификации поверхности микрореактора, однако не всегда исследователи проводят оценку эффективности реакции методом ПЦР в режиме реального времени, что затрудняет сравнительный анализ качества получаемых покрытий, и очень редко приводят данные о стабильности получаемых покрытий при хранении. В связи с этим выбор способов и оптимизация условий модифицирования поверхности микрочипа остается актуальной задачей.

Типы микрочиповых систем

Конструкции микрочиповых ПЦР-систем достаточно разнообразны. По способу проведения реакции ПЦРсистемы можно разделить на два класса: проточные и стационарные. В стационарных ПЦР-микрочипах раствор находится в микрореакторе и его температура циклически изменяется. Количество микрореакторов в таком микрочипе может быть от одного до нескольких десятков, сотен и даже тысяч. Для микрочипов с одиночными микрорсакторами имеется больше возможностей оптимизировать быстродействие системы, равномерность нагрева и способ ввода раствора в микрорсактор, однако производительность таких систем невелика. Для увеличения производительности применяются системы со значительным количеством микрореакторов, однако в этом случае приходится тщательно оптимизировать скорость и неравномерность нагрева, усложнять способ ввода раствора и идти на компромисс, снижая быстродействие.

В стационарных микрочипах термоциклирование раствора внутри микрореакторов может осуществляться контактным способом с помощью внешнего элемента, с помощью интегрированных терморезистивных элементов и бесконтактным способом путем подвода внешней энергии, например ИК излучения [24, 25], индукционных [60] или микроволновых [61] электромагнитных полей (рис. 4). Микрореакторы в таких микрочипах выполняются как в виде закрытых ячеек, которые требуют сложных технологий изготовления, но позволяют

Рис. 4. Варианты стационарных микрочинов с различными способами термоциклирования раствора внутри микрореакторов:

a — контактный способ с помощью внешнего нагревательного элемента; δ — использование интегрированных терморезистивных элементов; e — бесконтактный способ путем подвода внешней энергии использовать микрофлюидные каналы для ввода растворов, и в виде открытых реакторов, которые более просты в изготовлении, однако требуют дополнительных систем дозирования.

В последние годы наблюдается тенденция создания стационарных микрочипов с иммобилизованными ПЦРреактивами, причем как для микрочипов с открытыми микрореакторами, для которых этого достичь относительно легко, так и для микрочипов с закрытыми ячейками, в которых иммобилизация ПЦР-реактивов сталкивается с рядом трудностей, связанных с доступом раствора к закрытым микрореакторам и с обеспечением испарения растворителя, а также с термолабильностью компонентов ПЦР. Эти ограничения преодолены в разработанных компанией «Fluidigm» микрочипах из полидиметилсилоксана, в микрореакторы которых при производстве могут быть внесены и лиофилизованы праймеры и зонды, специфичные по отношению к различным фрагментам ДНК [46]. В работе [62] описано применение микрофлюидного чипа с высушенными ПЦРреактивами, которые изолированы от внешней среды посредством парафина и могут храниться при комнатной температуре. Парафин продолжает служить барьером и при вводе в микрореактор водной пробы, содержащей анализируемую ДНК, и только при нагревании до 95 °С парафиновый барьер расплавляется и высушенные компоненты ПЦР растворяются во введенном растворе пробы. При вводе в микрореактор емкостью 30 мкл 200 копий ДНК фага лямбда исследователи зарегистрировали методом гель-электрофореза амплификацию специфического фрагмента [62]. Отметим, что использование иммобилизованных в микрореакторах реактивов может значительно ускорить внедрение химических микрочинов в аналитическую практику.

Второй тип ПЦР-микрочипов (рис. 5) предназначен для осуществления динамического варианта ПЦР в потоке. В данном способе ПЦР-раствор последовательно прокачивается по микроканалу, выполненному в виде серпантина, через три зоны, температура которых поддерживается постоянной. Подобный способ проведения

Рис. 5. Схематичное изображение проточного ПЦР-мик-рочина

ПЦР в стеклянном микрочипе с использованием медных нагревательных элементов впервые предложил Копп с сотр. в 1998 г. [63]. Авторам удалось выполнить ПЦРанализ ДНК, используя микрочип с 20-ю последовательными секциями микроканала, за время от 1,5 до 18,7 мин в зависимости от скорости прокачки ПЦРраствора по микроканалу.

Интерес к системам с проточными микрочипами обусловили следующие привлекательные свойства и возможности их функционирования [12]: интегрирование процессов пред- и постобработки продуктов ПЦР; управление динамикой термоциклирования изменением только скорости потока раствора; малая тепловая инерция, зависящая от площади сечения микроканала; варьирование объема пробы от одного до нескольких десятков микролитров. Вместе с тем практическое применение таких микрочипов ограничивает ряд недостатков, с которыми столкнулись исследователи проточных систем в начале их появления. Это возможность образования воздушных пузырьков внутри микроканала при нагреве; необходимость применения достаточно громоздких внешних шприцевых насосов; сложность в изменении параметров ПЦР, зависящих от конструкции микроканала; технологические сложности в создании высокоинтегрированных систем для анализа нескольких образцов.

Дальнейшие исследования были направлены на устранение указанных ограничений. Так, в работе [64] предложили заполнять микроканал не смешивающимся с водой фторированным маслом, которое затем вытеснялось ПЦР-раствором, что позволяло избежать образования в микроканале пузырьков воздуха. Развитие подобной идеи в работах этой группы привело к созданию проточного ПЦР-микрочипа, предназначенного для количественного анализа генетически модифицированных организмов таких, как кукуруза линии MON810 [65].

С целью уменьшения размеров ПЦР-системы с проточными микрочипами был предложен микрочип из полиметилметакрилата, в котором для создания реакционного потока по микроканалу вместо внешнего шприцевого насоса используется не смешивающаяся с водой ферромагнитная жидкость, помещенная в данный микроканал [42, 43]. Внешний по отношению к чипу миниатюрный мотор вращает постоянный магнит, который увлекает за собой ферромагнитную жидкость в канале, тем самым обеспечивая прохождение ПЦР-раствора по трем температурным зонам. С помощью такой системы была достигнута амплификация фрагмента ДНК фага лямбда длиной 500 п.о. за 4 мин. Продемонстрировано применение разработанной системы в криминалистической практике.

Оригинальное развитие получила идея использования эмульсии типа «вода в масле» в проточных ПЦРмикрочипах. Так, в 2006 г. предложен метод [66], по которому водная фаза, содержащая компоненты ПЦР, образует капли в не смешивающемся с водой масле, и полученная эмульсия вводится в микроканал ПЦР-чипа, результат ПЦР детектируется по методу «конечной точки». В последующих работах [67, 68] были продемонстрированы различные приложения метода ПЦРанализа с помощью подобных микрочипов и эмульсий, содержащих капли объемом вплоть до нескольких пиколитров, в том числе с детектированием продуктов ПЦР в режиме реального времени за 35 мин (55 с/цикл) [69]. Были достигнуты низкие пределы обнаружения, обусловленные возможностью детектировать даже одну копию ДНК в микрокапле, а вариант так называемой цифровой ПЦР, когда в расчет принимается статистическое распределение молекул в микрореакторах, позволяет обнаруживать 1 молекулу ДНК на 167 капель, что соответствует 0,003 пг/мкл ДНК аденовируса [69].

Методы нагрева и измерения температуры в микрореакторах

Разработаны многочисленные варианты систем термоциклирования ПЦР в микрочипах. Как следует из табл. 1, критерии выбора системы нагрева и охлаждения, а также термодатчика многофакторны, причем требуется согласование характеристик микрочипа и способов его изготовления с характеристиками системы термоциклирования.

Все многообразие систем термоциклирования можно разделить на две группы: контактные и бесконтактные системы.

В контактных системах поверхность нагревателя и поверхность термодатчика находятся в физическом контакте с микрореактором, в то время как в бесконтактных системах нет прямого контакта реакционной системы с нагревателем и термодатчиком, а энергия к микрореактору подводится в виде электромагнитных полей, температура измеряется также опосредованно, например оптическими методами.

Контактные системы нагрева и охлаждения совместно с контактными термодатчиками были интегрированы в первые ПЦР-микрочипы и до сих пор они достаточно распространены в микрочиповых системах благодаря высокой эффективности передачи тепла от нагревателя к микрочипу и легкости измерения и управления температурой.

По принципу действия нагревательного элемента контактные системы нагрева могут быть подразделены на несколько типов.

Микрочиповые системы, использующие эффект Джоуля (резистивный нагрев) — наиболее реализуемый вариант среди интегрированных устройств. Современные МЭМС-технологии позволяют наносить электропроводящие покрытия разных топологий на различные подложки, и полученные резисторы работают в качестве нагрузки. Со времени одного из первых опытов применения подобных нагревателей [17] несколько научных групп распространили и дополнили эту технологию, используя в качестве материала резистора платину, золото, алюминий, вольфрам, оксид олова-индия [18, 19]. Металлические нагреватели наносятся на подложку методом фотолитографии с термическим испарением или распылением в плазме. Проводящие контактные площадки для подключения подложки к внешнему источнику питания, как правило, формируют ближе к торцу микрочипа. Важными параметрами таких нагревателей являются микроструктурные характеристики образующихся пленок, поскольку любые нарушения пленки при нагреве из-за изменения температурного коэффициента сопротивления и температурного коэффициента расширения приводят к невоспроизводимому распределению температуры в ходе ПЦР. Нагревательные элементы могут быть сформированы на внешней стороне микрочипа и в этом случае не контактируют с ПЦР-раствором.

С целью большей точности поддержания температуры в микрореакторе в работе [19] был изготовлен чип с платиновыми нагревательными и измерительными резисторами, находящимися в контакте с раствором, а для устранения эффекта ингибирования эти металлические резисторы покрывали тонким слоем нитрида кремния. В работе [70] обеспечена термоизоляция микрореакторов от основной массы микрочипа с помощью канавок, что позволяет достичь высоких скоростей нагрева (90 °C/с) и охлаждения (74 °C/с). При наличии таких канавок дополнительно снижается потребляемая электрическая мощность, требуемая для нагрева до заданной температуры. Реализован способ нагрева с использованием поликремниевого резистивного нагревателя [30]. Измерение температуры осуществляется по изменению сопротивления этого резистора, так как температурный коэффициент сопротивления равен 5,7·10⁻³K⁻¹, а его отклик линеен в диапазоне рабочих температур ПЦР.

Большинство контактных интегрированных нагревателей использует пропорционально-интегрально-дериватационый (ПИД) алгоритм для управления температурой. Точность поддержания температуры составляет $\pm 0,5$ °C [71]. Благодаря многим преимуществам, которыми обладают подобные интегрированные системы, они могут быть с успехом внедрены в практику ПЦРанализа. Это станет возможным, когда стоимость микрочипа и всей аналитической системы будет достаточно низкая, чтобы они могли конкурировать с классическими ПЦР-анализаторами, либо когда функциональность подобных устройств будет обеспечивать полный цикл молекулярно-генетического анализа в варианте «образец на входе – результат на выходе». До настоящего времени массовое применение таких систем ограничено.

В рамках исследования метода ПЦР-анализа осуществляли резистивный нагрев за счет эффекта Джоуля не только металлических проводников, но и ПЦР-раствора, находящегося в микроканале чипа, поскольку он является электролитом и обладает ионной проводимостью. Такой подход был реализован работе [72]: в капилляре, к концам которого было приложено переменное напряжение частотой 60 Гц, амплитудой от 0 до 1000 В, проводили ПЦР, продукты регистрировали методом гельэлектрофореза. В работе [36] на основе теоретических расчетов был разработан микрочип, изготовленный из полидиметилсилоксана, термоциклирование в котором осуществляется путем пропускания электрического тока через ПЦР-раствор в микроканале. Продемонстрирован метод детектирования ПЦР в режиме реального времени с использованием гибридизационных флуоресцентных TaqMan зондов, при этом потребляемая мощность составила 1,3 Вт, однако скорости нагрева и охлаждения были невысоки и составили 3 и 2 °С/с, соответственно.

Отметим, что несмотря на ряд успешных реализаций подобного подхода и наличия потенциала для дальнейших улучшений микрочиповых аналитических ПЦРсистем, остаются ограничения, связанные с образованием воздушных пузырьков в микроканале, со сложностью ввода проб в микроканал, с необходимостью стабильного измерения температуры по электросопротивлению ПЦР-раствора, т.е. требуются дальнейшие шаги, чтобы обобщить опыт имеющихся разработок и внедрить микрочиповые системы в практику ПЦР-анализа.

Многие разработчики микрочинов используют внешние нагревательные элементы, так как в этом случае появляется возможность значительно упростить микрочип, снизить себестоимость его производства и обеспечить экономическую целесообразность его одноразового применения. В качестве внешних систем термоциклирования часто применяются элементы, основанные на эффекте Пельтье [10, 28, 31-33, 73, 74]. Элементы Пельтье по сравнению с интегрированными резистивными нагревателями [30] энергетически менее эффективны (потребляют 12,3 и 2,8 Вт, соответственно) и демонстрируют меньшие скорости термоциклирования (нагрев:охлаждение 5:5 °C/с и 15:5 °C/с, соответствснно). Однако при увеличении пиковой мощности элементов Пельтье до 56 Вт достигаются относительно высокие скорости цикла нагрев:охлаждение 9,5:10,3 °С/с [33]. Существенным преимуществом в случае использования внешнего элемента Пельтье остается возможность применения достаточно простых одноразовых микрочипов, так как все функции системы термоциклирования реализуются во внешних по отношению к чипу узлах ПЦРанализатора. К недостаткам относятся несколько повышенное потребление энергии и ограниченные скорости термоциклирования. Отметим, что большинство успешных коммерческих микрочиповых ПЦР-анализаторов, выпускаемых в настоящее время, использует внешние элементы Пельтье.

Интересным вариантом контактных систем термоциклирования являются градиентные конвективные микрочины, в которых осуществляется циркуляция жидкости (ПЦР-раствора) между несколькими температурными зонами за счет изменения ее плотности в зависимости от температуры. В работе [75] микрореактор диаметром 1,5 мм и высотой 1,5 см был размещен в градиентном температурном поле: верх и низ микрореактора находились при температуре 97 и 61 °C, соответственно. В этих условиях возникает конвективное движение, которое было визуализировано с помощью флуоресцентных латексных микросфер. В этом микрореакторе была проведена ПЦР, в результате которой был получен ампликон длиной 295 п.о. Аналогичный подход описан в работе [76]: в микрочипе был создан градиент из трех температурных зон и в результате была успешно осуществлена амплификация фрагмента ДНК длиной 127 п.о. за 10 мин при исходной концентрации ДНК 10 пг/мкл и фрагмента геномной ДНК длиной 470 п.о. за 20 мин.

Промежуточное положение между контактными и бесконтактными системами термоциклирования занимают ПЦР-термоциклеры. В таких системах с помощью нагревательного элемента создается поток горячего воздуха, который подводит тепло к микрореактору. Пока термоциклеры не вызвали особого интереса у разработчиков химических микрочинов. Это объясняется тем, что в большинстве работ в качестве микрореакторов используются стеклянные канилляры [16, 72], что напрямую связано с широким распространением коммерческого ПЦР-анализатора LightCycler фирмы «Roche» и капилляров к нему. Несмотря на то, что подобные системы термоциклирования позволяют достичь высоких скоростей нагрева и охлаждения, для создания потока горячего воздуха требуется мощность от 300 до 1000 Вт, что значительно уменьшает привлекательность подобных устройств для создания портативных систем.

Бесконтактные системы термоциклирования в ПЦРмикрочипах осуществляют нагрев ИК-излучением, индукционный нагрев и нагрев посредством микроволновой энергии. Одна из первых работ по нагреванию водного раствора в капилляре с помощью ИК лампы была опубликована в 1998 г. [77]. Поскольку вода имеет сильные полосы поглощения в ИК области спектра при длинах волн 2,66, 2,78 и 6,2-8,5 мкм, исследователи использовали лампу накаливания, излучающую в дианазоне вплоть до 4 мкм. Подобная система бесконтактного нагрева была применена в 2001 г. в микрочипах, изготовленных из полиимида, в которых ПЦР завершилась за 4 мин [44]. Группа проф. Ландерса продолжила разработку в этом направлении и предложила интегрированный микрочип с нагревом ИК лампой. В данном случае скорости нагрева и охлаждения были несколько меньшие, 7,8 и 5 °С/с, соответственно, ПЦР была осуществлена за 12 мин (30 циклов) с последующим электрофоретическим разделением продуктов ПЦР [24, 78]. Дальнейшее развитие этой концепции было продолжено в работе [79], в которой была достигнута успешная амплификация фрагмента геномной ДНК B. anthracis длиной 211 п.о. за время 18,8 мин (30 циклов, трехстадийный температурно-временной режим).

Аналогичный подход, потенциально привлекательный с точки зрения развития ПЦР-микрочинов, был использован с целью управления ферментативной реакцией с помощью ИК лазера (λ =1480 нм, 150 мВт) [80], излучение которого попадает в полосу поглощения воды при 1500 нм. В работе [81], в которой применялся ИК лазер (λ =1480 нм, 75 мВт), была создана система ПЦР-анализа с образованием конвективных потоков. Лазеры также могут быть использованы для нагревания поглощающих микроструктур в микрочине [82].

Интересным вариантом бесконтакного нагрева служит система термоциклирования [60], функционирующая с помощью генератора высокочастотного электромагнитного излучения (частота 200 кГц, мощность 1,4 Вт), которая обеспечивает в кремний-стеклянном микрочипе скорости нагрева и охлаждения 6,5 и 4,2 °С/с, соответственно. ПЦР была проведена также в микрочипе, в котором используется энергия микроволн для бесконтактного нагрева водных ПЦР-растворов в микрореакторе [61]. Достигнуты очень высокие скорости нагрева и охлаждения, равные 65 °С/с, точность поддержания температуры при термоциклировании составила $\pm 0,1$ °С.

Практически все бесконтактные системы термоциклирования весьма перспективны, поскольку демонстрируют высокие скорости нагрева и охлаждения и совместимы с достаточно дешевыми микрочипами. Однако пока не разработаны системы с большим числом ПЦРмикрореакторов, не решены вопросы, касающиеся неравномерности нагрева в таких мультиреакторных системах, остаются трудности при измерении температуры, так что практическое применение таких систем остается ограниченным.

Выбор системы для измерения температуры в микрореакторах определяется с учетом критериев, обусловленных спецификой условий проведения ПЦР (см. табл. 1). Условно термодатчики можно разделить на контактные и бесконтактные по аналогии с нагревательными системами. В качестве контактных термодатчиков в микрочиновых ПЦР-устройствах применяются внешние термопары, терморезисторы и полупроводниковые термоэлементы [31-33, 74], встроенные в микрореакторы миниатюрные термопары [80] и интегрированные в микрочип пленочные терморезисторы [70]. Преимуществами контактных термодатчиков является относительная простота измерения сигнала и простая калибровка датчиков. Недостатки связаны с возможным ингибированием ПЦР-материалом термодатчика, влиянием измерительного устройства на измеряемую температуру из-за сопоставимых размеров термодатчика и микрореактора, кроме того, необходима индивидуальная калибровка встроенных в микрочип термодатчиков.

В качестве бесконтактных систем измерения температуры предложены оптические методы, в основе которых лежит изменение цвета жидких кристаллов [47], изменение интенсивности флуоресценции красителя за счет температурно-зависимого квантового выхода флуорофора или температурно-зависимого сдвига спектров поглощения или флуоресценции [83], прямая ИК термометрия [18], рамановская спектроскопия [20].

Термотропные жидкие кристаллы, способные изменять свой цвет при нагревании [47], использованы в работе [22] для оценки пространственного распределения температуры в ПЦР-микрореакторах емкостью 1 мкл и в работе [41] для оценки динамики изменения температуры в ПЦР-микроканале. Этот метод позволяет измерять температуру с высокой точностью $\pm 0,1$ °C, однако диапазон измерений достаточно узок. Сферические капсулы с термотропными жидкими кристаллами имеют диаметр в десятки микромстров и их применение ограничено микроструктурами, большими по размеру. Кроме того, введение таких микросфер непосредственно в ПЦР-раствор может привести к ингибированию реакции, так что потребуется разработка ПЦР-совместимых капсул.

Резкое снижение флуоресценции интеркалирующего красителя SYBR Green при достижении точки плавления ампликонов регистрировали в работе [84], а температурную зависимость флуоресценции красителя 6-FAM — в работе [15]. Наибольшее распространение для определения температуры в микрочипах в последние годы получил метод измерения интенсивности флуоресценции красителя родамина В [36, 80]. Его достоинства: широкий динамический диапазон измерения, высокая скорость измерения и высокая температурная чувствительность. Однако этот метод измерения имеет невысокую точность. Для повышения точности измерения температуры предложена новая теоретическая модель расчета температурной калибровки в методе с использованием родамина В [85], которая позволила скоррсктировать не учтенные ранее ошибки. Подобный подход был применен для оценки распределения температур по всему микрочипу [86], в котором родамин В вносился в тонкий слой полидиметилсилоксана и полученная полимерная пластина приводилась в контакт с исследуемым микрочином.

Измерения температуры ПЦР-микрочипов методом ИК термографии были выполнены в нескольких работах [18, 19, 41, 55]. Установлено, что требуется провести целый комплекс исследований для взвешенного анализа таких факторов, как потери излучения, фоновое излучение, неопределенность оценки излучательной способности микрочипа. Кроме того, требуется оптимизация параметров измерительного ИК термометра и его тщательная калибровка. Из преимуществ ИК термометрии можно отметить быстрый отклик, достаточный для ПЦР динамический диапазон измерения, высокое пространственное разрешение, отсутствие взаимодействия с компонентами ПЦР.

Еще одним вариантом бесконтактного метода измерения температуры является метод [20], в котором для оценки температуры внутри микрореактора использустся спектроскопия рамановского рассеяния. Измерение температуры основано на регистрации температурной зависимости отношения интенсивности полос, характерных для водородосвязанных и неводородосвязанных валентных колебаний –ОН. Интегрирование в кремниевый микрочип платинового резистивного нагревателя и использование разработанной бесконтактной системы измерения температуры позволяют достичь высокой точности поддержания температуры.

Отметим, как и в случае бесконтактных систем нагрева, потенциальную привлекательность бесконтактных систем измерения температуры. Однако практически по отношению ко всем вариантам термодатчиков требуются дальнейшие исследования, направленные па увеличение точности и стабильности измерений, а также на снижение стоимости подобных систем.

Методы детектирования ДНК в микрочипах

В начальный период развития микрочиповых аналитических ПЦР-систем большинство исследователей применяли способы детектирования, которые требовали извлечения продуктов реакции из микрореакторов и переноса их во внешнюю по отношению к микрочипу систему анализа. Наиболее часто для анализа использовался метод гель-электрофореза с интеркалирующими красителями [28, 29], однако такой анализ достаточно длителен и требует значительных трудозатрат. В дальнейшем интерес исследователей вызвал метод микрочипового капиллярного электрофореза для разделения ЛНК, который позволяет ускорить и автоматизировать анализ. В работах [18, 21, 57, 87] описано применение коммерческого анализатора Agilent 2100 Bioanalyzer (Agilent Technologies), а в работе [88] — лабораторных установок с системой лазерно-флуоресцентного детектирования при микрочиповом электрофоретическом разделении и идентификации ампликонов, получаемых в ПЦР-микрочипах. Подобная комбинация из двух микрочиповых систем — ПЦР и электрофореза — позволяст упростить и ускорить проведение ПЦР-анализа нуклеиновых кислот. Однако при использовании данного метода требуется вручную переносить пробы из ПЦРмикрочинов в электрофоретические микрочины, что может приводить к кросс-контаминации и ошибкам.

Одним из первых примеров интегрированной аналитической системы, в функции которой входят и электрофоретическое разделение, и флуоресцентное детектирование продуктов, является микрочип с реактором, соединенным с сепарационным микроканалом, имеющим крестообразную топологию [34, 89]. В таком чипе ПЦР-смесь вводится в микрореактор на стадию термоциклирования, затем продукты реакции направляются в микроканал для проведения электрофореза. Микрочип изготовлен из двух стеклянных пластин, в одной из которых протравлены углубления (каналы, камеры и коммуникационные отверстия), а вторая служит для закрытия протравленных элементов. Термоциклирование осуществляется с помощью внешних элементов Пельтье. Такой микрочип позволяет провести как саму ПЦР, так и качественное определение продуктов, однако только одной пробы. Анализ нескольких проб возможен при размещении нескольких ячеек для проведения ПЦР и сепарационных микроканалов на одном микрочипе [35, 47, 90].

Для увеличения количества микрореакторов на одном чипе был применен метод флуоресцентного детектирования продуктов ПЦР по «конечной точке» [55, 66, 91], который позволяет получить качественную информацию о наличии в пробе искомых фрагментов ДНК. Значительное увеличение информативности было достигнуто с помощью метода флуоресцентного гибридизационного анализа, заключающегося в проведении реакции комплементарного связывания полученных при ПЦР ампликонов с ковалентно-привитыми к поверхности биочипа участками ДНК после проведения ПЦР в микрореакторах, что позволило определить мутации в ампликонах [92].

Метод электрофоретического детектирования ДНК и флуоресцентный метод по «конечной точке» не позволяют получить количественные данные о содержании ДНК в пробе, поэтому дальнейшее развитие микрочиновых систем молекулярно-генетического анализа направлено на реализацию метода ПЦР-анализа в режиме реального времени, который дает количественную информацию. Микрочиновые аналитические системы ПЦР-РВ с интеркалирующими красителями и флуоресцентными зондами продемонстрированы в значительном числе работ (см. например [18, 21, 36]). В ряде работ использовали метод плавления в микрочине для идентификации специфического продукта ПЦР. Абсолютные пределы обнаружения с помощью подобных систем приближаются к теоретическому минимуму: флуоресцентные методы дстектирования позволяют определять единичные копии молекул ДНК, полученные в современных лабораторных установках и коммерческих микрочиповых ПЦР-РВ-анализаторах. Такие результаты достигаются благодаря оптимизации системы термоциклирования, микрочинов и модифицирующих покрытий, что обеспечивает высокую эффективность ПЦР, которая, как показано для ряда систем, приближается к 100% [32, 33, 74].

На рис. 6 представлены результаты проведения ПЦР с анализом в режиме реального времени с использованием гибридизационных зондов [74]. Аналитическая система основана на флуоресцентном детектировании продуктов ПЦР, образующихся в 16 микрореакторах емкостью 1,3 мкл стеклянно-кремниевого микрочипа. Внутренняя поверхность микрореакторов модифицирована слоем полиметилметоксисилоксана. Время проведения ПЦР 18 мин. Отметим высокую эффективность ПЦР, равную 90%, что говорит об отсутствии ингибирования реакции.

В рамках исследований, направленных на миниатюризацию систем детектирования в микрочинах, были разработаны электрохимические методы определения ДНК в режиме реального времени [93]. Установлено, что применение трипиридилосмия(III) в качестве окислительно-восстановительного катализатора, генерируемого на электроде, позволяет регистрировать в ходе ПЦР расход одного из реактивов, 7-deaza-dGTP (7деаза-2'-дезоксигуанозин-5'-трифосфат), добавленного в ПЦР-раствор. Реакцию проводили в микрочине, включающем восемь микрореакторов смкостью 50 мкл со встроенными электродами. Предел обнаружения 10³ молекул ДНК цитомегаловируса на микрореактор, что уступает флуоресцентным системам детектирования на три порядка. Однако существенное упрощение анализатора позволяет создавать портативные устройства. Подобный подход к разработке был предложен в работе [94], в которой использовался электроактивный интеркалирующий краситель метиленовый синий, а ПЦР проводилась в проточном микрочине. После оптимизации модифицирующих покрытий микроканала и кон-

Рис. 6. Результаты ПЦР с анализом в режиме реального времени, полученные в микрочипе при различных концентрациях ДНК (плазмида со встроенным участком вируса гепатита С) (а) и градуировочная характеристика (б):

 $1 - 2 \cdot 10^5$ копий/мкл; $2 - 2 \cdot 10^4$ копий/мкл; $3 - 2 \cdot 10^3$ копий/мкл, $4 - 2 \cdot 10^2$ копий/мкл; 5 - 20 копий/мкл; 6 - 2 копии/мкл. Градуировочная зависимость построена для ПЦР-кривых 1-6

центрации метиленового синего, устранения ингибирования ПЦР металлическими электродами и предотвращения образования воздушных пузырьков была достигнута чувствительность определения ДНК фага лямбда, сравнимая с таковой для ПЦР-систем с флуоресцентным детектированием в режиме реального времени.

В работах [37, 46] использовали микрочипы со значительным количеством микрореакторов (2500, 3000, 9000) и метод цифровой ПЦР в режиме реального времени («цифровой ПЦР-РВ») для определения содержания ДНК в пробе с построением градуировочной зависимости в координатах «концентрация ДНК – число ячеек, в которых наблюдается сигнал ПЦР». Подобный подход основан на стохастическом распределении молекул ДНК в микрореакторах, которое описывается распределением Пуассона. Этот метод позволяет регистрировать незначительные вариации в концентрации искомого фрагмента ДНК [37, 46], что недостижимо с помощью градуировочной зависимости в координатах «логарифм концентрации ДНК — пороговый цикл», используемой в традиционном методе ПЦР-РВ. На основе таких микрочипов выпущены коммерческие микрочиповые анализаторы, разработанные компаниями «BioTrove» и «Fluidigm». Надо сказать, что эти анализаторы не обеспечивают высоких скоростей термоциклирования, что связано с применением полимерных материалов с низкой теплопроводностью в конструкции микрочипов. Отметим также, что динамический диапазон измерений по методу «цифровой ПЦР-РВ» значительно уступает таковому для традиционного метода ПЦР-РВ и не превышает трех порядков величины.

Тенденции развития микрочиновых аналитических ПЦР-систем показывают, что в настоящее время и в ближайшем будущем наиболее востребованными будут системы, реализующие метод ПЦР-РВ, в частности вариант «цифровой ПЦР-РВ», и системы, основанные на методе гибридизационного анализа. Именно эти аналитические микрочиповые системы позволяют количественно определять концентрацию ДНК в исходной пробе и проводить анализ мутаций получаемых ампликонов.

Применение микрочиповых систем для молекулярно-генетического анализа

Молекулярно-генетический анализ реальных образцов состоит из стадий выделения и очистки нуклеиновых кислот и последующего проведения полимеразной цепной реакции с детектированием продуктов реакции. Поскольку процедуры выделения нуклеиновых кислот из различных образцов достаточно длительны и трудоемки, а объемы исходной и очищенной проб плохо сочетаются с микрочиповым форматом проведения ПЦР, возникает актуальная задача разработки микрочиповых систем пробоподготовки. Еще более актуальная задача состоит в создании полностью интегрированной системы полного молекулярно-генетического анализа, в которой должен быть реализован принцип «образсц на входе — ответ на выходе» [78].

Многие исследователи пытаются адаптировать к микрочиповой технике существующие методики выделения и очистки нуклеиновых кислот, например, достаточно распространенную методику твердофазной экстракции ДНК на кремнеземных сорбентах с последующим их элюированием буферным раствором. В работе [95] использовали микрочип, в микроканал которого помещаются гибридные частицы кремнеземного сорбента и золь-гель кремнезема. Через микроканал со скоростью 250 мкл/ч пропускается раствор (pH = 6,1), содержащий ДНК фага лямбда. Полученная степень выделения ДНК составила 67%; выделение ДНК из цельной крови достигается за 15 мин.

Альтернативой экстракции нуклеиновых кислот являются методы, основанные на фильтрации различных клеточных компонентов крови. В работе [96] разработан микрочип с разветвленными микроструктурами в микроканале в виде колонн и щелей. При пропускании образца крови через такие микроструктуры происходит проскок всех компонентов крови, кроме белых кровяных клеток. Поскольку гемоглобин, содержащийся в красных кровяных клетках, является основным ингибитором ПЦР, поступающим из цельной крови, удаление этих клеток способствует успешной амплификации оставшейся на фильтре пробы после ее прямого ввода в ПЦР-смесь и разрушения белых кровяных клеток при первоначальном прогреве. Подобные методы с использованием частиц кремнезема в качестве сорбента нуклеиновых кислот были использованы и в других работах для выделения и очистки ДНК из клеток и проведения ПЦР [97, 98].

Развитие знаний и накопление опыта в области разработки микрочиповых устройств пробоподготовки и ПЦР-микрочипов привели к реальной возможности создания системы полного анализа. Одна из первых подобных систем описана в работе [99]. Это микрофлюидная система, она включает в себя смесители, клапаны, насосы, сеть микроканалов и микрореакторов, нагревательные элементы и гибридизационную матрицу с электрохимическим детектором. Система позволяет проводить лизис клеток, поступающих в микрочип с пробой биологических жидкостей, с помощью пьезоэлектрического вибратора, пузырьков воздуха и магнитных частиц сорбента, на которые адсорбируются выделенные молекулы ДНК. Затем насосы, действие которых основано на электролизе водного раствора электролита и электрокинетических явлениях, направляют поток лизата в ПЦР-микрореактор, где магнитные частицы сорбента улавливаются и промываются. Реагенты для ПЦР проходит стадию термоциклирования в микрореакторе. Продукты реакции детектируются на гибридизационном биочипе, оснащенном несколькими электродами для снятия специфических сигналов от продуктов ПЦР.

Возможность создания автоматизированной системы полного молекулярно-генетического анализа, выполняющей выделение ДНК из образцов, очистку, амплификацию, разделение и детектирование полученных продуктов методом электрофореза в едином микрочипе, было продемонстрировано в нескольких работах, опубликованных в течение последних лет [100—102].

Оригинальный подход к разрушению клеток и выделению ДНК был реализован с использованием микрочипа с интегрированными электродами, на которых в результате электролиза выделяются гидроксид-ионы, которые вызывают лизис клеток в микрореакторе емкостью в несколько микролитров [103]. Разработанное устройство было использовано для анализа методом ПЦР-РВ четырех типов бактерий, включая грамположительные и грамотрицательные бактерии. Показаны такие преимущества, как исключение необходимости нагревания образца и введения химических реагентов, отсутствие ингибирования, низкие потери ДНК, а также возможность функционирования устройства при низком напряжении питания и малой потребляемой мощности.

В работе [104] разработан прототип анализатора на основе проточного микрочипа, осуществляющего количественный ПЦР-РВ анализ ДНК вируса гепатита В и РНК вируса гепатита С. Устройство содержит модули управления микрофлюидным потоком и температурой трех стационарных металлических нагревательных блоков, что позволяет гибко устанавливать параметры температурно-временного режима ПЦР в зависимости от анализируемого объекта.

Заключение

Проведенная оценка динамики развития микрочиповых аналитических систем молекулярно-биологического анализа, а также обзор последних работ в этой области ясно показывают, что эти системы прошли значительный этап своего эволюционного развития и заняли прочные позиции в аналитической практике. Этому прежде всего способствовало появление коммерческих микрочиповых ПЦР-анализаторов и разнообразных микрочинов для выполнения ряда важных прикладных задач. Начальные идеи, которые были реализованы в первых микрочиповых экспериментальных установках, выполняющих отдельные операции (быстрая ПЦР, быстрый электрофорез, пробоподготовка), были последовательно развиты до прототипов реальных анализаторов, осуществляющих все аналитические функции в одном устройстве. Практически полностью решены вопросы модификации поверхности наиболее распространенных материалов, из которых изготавливают ПЦР-микрочины. Опробованы различные материалы, включая недорогие полимеры и металлы, и показаны их преимущества.

Растущее количество работ, посвященных конструированию, оптимизации и применению новых микрочиповых систем полного анализа, показывает актуальность этой задачи. Текущие тенденции отражают создание новых недорогих материалов и технологий для изготовления ПЦР-микрочипов, развитие систем бесконтактного термоциклирования и измерения температуры, дальнейшую миниатюризацию систем детектирования, увеличение информативности этих систем. Гибридизационный анализ, мультиплексный анализ, автоматизированные системы ввода проб в микрочипы, новые методы пробоподготовки в микрочипах, микрочипы с иммобилизованными реагентами — все это достижения в области создания микрочиновых аналитических систем.

ЛИТЕРАТУРА

- West J., Becker M., Tombrink S., Manz A. Anal. Chem., 2008, v. 80, № 12, p. 4403 – 4419.
- Ohno K., Tachikawa K., Manz A. Electrophoresis, 2008, v. 29, № 22, p. 4443 – 4453.

- 3. Dittrich P.S., Tachikawa K., Manz A. Anal. Chem., 2006, v. 78, № 12, p. 3887---3908.
- 4. Arora A., Simone G., Salieb-Beugelaar G.B., Kim J.T., Manz A. Ibid., 2010, v. 82, № 12, p. 4830-4847.
- Lab-on-a-Chip Technology. V. 2: Biomolecular Separation and Analysis. Eds. K.E. Herold, A.Rasooly. Caister Academic Press, 2009, 300 p.
- 6. Беленький Б.Г., Комяк Н.И., Курочкин В.Е., Евстрапов А.А., Суханов В.Л. Научное приборостроение, 2000, т. 10, № 2, с. 57 -- 64.
- Мак-Махон Д. Аналитические приборы. Руководство по лабораторным, портативным и миниатюрным приборам. М.: Профессия, 2009, 366 с.
- 8. *Зимина Т.М.* Нано- и микросистемная техника, 2007, № 8, с. 27---49.
- 9. Евстранов А.А., Рудницкая Г.Е., Петухова Н.А. Научное приборостроение, 2005, т. 15, № 2, с. 27-40.
- Сляднев М.Н., Казаков В.А., Лаврова М.В., Ганеев А.А., Москвии Л.Н. Там же, 2005, т. 15, № 2, с. 41.
- 11. ПЦР в «реальном времени». Ред. Д.В. Ребриков. М.: Бином, 2009, 223 с.
- 12. Zhang C., Xing D. Nucleic Acids Res., 2007, v. 35, № 13, p. 4223 --4237.
- 13. Zhang Y., Ozdemir P. Anal. chim. acta, 2009, v. 638, № 2, p. 115-125.
- Principles and Technical Aspects of PCR Amplification. Eds. E. van Pelt-Verkuil, A. van Belkum, J.P. Hays. Springer Science, 2008, 332 p.
- 15. Neuzil P., Zhang C., Pipper J., Oh S., Zhuo L. Nucleic Acids Res., 2006, v. 34, № 11, p. c77.
- 16. Wittwer C.T., Fillmore G.C., Garling D.J. Anal. Biochem., 1990, v. 186, № 2, p. 328 - 321.
- Northrup M.A., Ching M.T., White R.M., Watson R.T. In: Transducers'93, seventh international conference on solid state Sens Actuators, Yokahama, Japan, 1993, p. 924.
- 18. Cho Y.-K., Kim J., Lee Y., Kim Y.-A., Namkoong K., Lim H., Oh K.W., Kim S., Han J., Park C., Pak Y.E., Ki C.-S., Choi J.R., Myeong H.-K., Ko C. Biosens. Bioelectron., 2006, v. 21, № 11, p. 2161 2169.
- 19. Ke C., Kelleher A.-M., Berney H., Sheehan M., Mathewson A. Sens. Actuators B: Chem., 2007, v. 120, № 2, p. 538–544.
- 20. Kim S.H., Noh J., Jeon M.K., Kim K.W., Lee L.P., Woo S.I. J. Micromech. Microeng., 2006, v. 16, № 3, p. 526.
- 21. Lee J.G., Cheong K.H., Huh N., Kim S., Choi J.W., Ko C. Lab. Chip, 2006, v. 6, № 7, p. 886 895.
- 22. Noh J., Sung S.W., Jeon M.K., Kim S.H., Lee L.P., Woo S.I. Sens. Actuators A: Phys., 2005, v. 122, p. 196 202.
- Wei W., Wang W., Li Z.-X., Luo R., Lü S.-H., Xu A.-D., Yang Y.-J. J. Micromech. Microeng., 2005, v. 15, № 8, p. 1369.
- 24. Easley C.J., Karlinsey J.M., Landers J.P. Lab. Chip, 2006, v. 6, № 5, p. 601-- 610.
- 25. Legendre L.A., Bienvenue J.M., Roper M.G., Ferrance J.P., Landers J.P. Anal. Chem., 2006, v. 78, № 5, p. 1444—1451.
- 26. Liu C.N., Toriello N.M., Mathies R.A. Ibid., 2006, v. 78, № 15, p. 5474 5479.
- 27. Toriello N.M., Liu C.N., Mathies R.A. Ibid., 2006, v. 78, № 23, p. 7997-- 8003.
- 28. Shoffner M.A., Cheng J., Hvichia G.E., Kricka L.J., Wilding P. Nucleic Acids Res., 1996, v. 24, № 2, p. 375--379.
- 29. Cheng J., Shoffner M.A., Hvichia G.E., Kricka L.J., Wilding P. Ibid., 1996, v. 24, № 2, p. 380 - 385
- 30. Erill I., Campoy S., Rus J., Fonseca L., Ivorra A., Navarro Z., Plaza J.A., Aguiló J., Barhé J. J. Micromech. Microeng., 2004, v. 14, № 11, p. 1558.

- 31. Сляднев М.Н., Лаврова М.В., Еркин М.А., Казаков В.А., Ганеев А.А. Ж. аналит. химии, 2008, т. 63, № 2, с. 210—217.
- 32. Сляднев М.Н., Лаврова М.В., Еркин М.А., Наволоцкий Д.В., Крисько А.В., Ганеев А.А. Научное приборостроение, 2007, т. 17, № 3, с. 16--24.
- 33. Наволоцкий Д.В., Крисько А.В., Арнаутов В.А., Гейбо Д.С., Ганеев А.А., Сляднев М.Н. Там же, 2010, т. 20, № 1, с. 10---20.
- 34. Waters L.C., Jacobson S.C., Kroutchinina N., Khandurina J., Foote R.S., Ramsey J.M. Anal. Chem., 1998, v. 70, № 24, p. 5172---5176.
- 35. Paegel B.M., Blazej R.G., Mathies R.A. Curr. Opin. Biotechnol., 2003, v. 14, № 1, p. 42---50
- 36. Hu G., Xiang Q., Fu R., Xu B., Venditti R., Li D. Anal. chim. acta, 2006, v. 557, № 1-2, p. 146-151.
- 37. Brenan C., Morrison T. Drug Discovery Today: Technologies, 2005, v. 2, № 3, p. 247–253.
- 38. Trung N.B., Saito M., Takabayashi H., Viet P.H., Tamiya E., Takamura Y. Sens. Actuators B: Chem., 2010, v. 149, № 1, p. 284---290.
- 39. Liu J., Enzelberger M., Quake S. Electrophoresis, 2002, v. 23, № 10, p. 1531---1536.
- 40. Wang H., Chen J., Zhu L., Shadpour H., Hupert M.L., Soper S.A. Anal. Chem., 2006, v. 78, № 17, p. 6223–6231.
- 41. Cheng J.Y., Hsieh C.J., Chuang Y.C., Hsieh J.R. Analyst, 2005, v. 130, № 6, p. 931--940.
- 42. Sun Y., Kwok Y.C., Foo-Peng Lee P., Nguyen N.T. Anal. Bioanal. Chem., 2009, v. 394, № 5, p. 1505–1508.
- 43. Sun Y., Kwok Y.C., Nguyen N.T. Lab. Chip, 2007, v. 7, № 8, p. 1012--1017.
- 44. Giordano B.C., Ferrance J., Swedberg S., Huhmer A.F., Landers J.P. Anal. Biochem., 2001, v. 291, № 1, p. 124-132.
- 45. Liu J., Hansen C., Quake S.R. Anal. Chem., 2003, v. 75, № 18, p. 4718---4723.
- 46. Seeb J.E., Pascal C.E., Ramakrishnan R., Seeb L.W. Methods Mol. Biol., 2009, v. 578, p. 277-292.
- 47. Zhang C., Xu J., Ma W., Zheng W. Biotechnol. Adv., 2006, v. 24, № 3, p. 243--284.
- 48. Krishnan M., Burke D.T., Burns M.A. Anal. Chem., 2004, v. 76, № 22, p. 6588--6593.
- 49. Koh C.G., Tan W., Zhao M.Q., Ricco A.J., Fan Z.H. Ibid., 2003, v. 75, № 17, p. 4591-4598.
- 50. Yang J., Liu Y., Rauch C.B., Stevens R.L., Liu R.H., Lenigk R., Grodzinski P. Lab. Chip, 2002, v. 2, № 4, p. 179-187.
- 51. Morrison T., Hurley J., Garcia J., Yoder K., Katz A., Roberts D., Cho J., Kanigan T., Ilyin S.E., Horowitz D., Dixon J.M., Brenan C.J. Nucleic Acids Res., 2006, v. 34, № 18, p. e123.
- 52. Obeid P.J., Christopoulos T.K., Crabtree H.J., Backhouse C. J. Anal. Chem., 2003, v. 75, № 2, p. 288-295.
- 53. Neuzil P., Pipper J., Hsieh T.M. Mol. Biosyst., 2006, v. 2, № 6-7, p. 292-298.
- 54. Panaro N.J., Lou X.J., Fortina P., Kricka L.J., Wilding P. Biomol. Eng., 2005, v. 21, № 6, p. 157-162.
- 55. Matsubara Y., Kerman K., Kobayashi M., Yamamura S., Morita Y., Tamiya E. Biosens. Bioelectron., 2005, v. 20, № 8, p. 1482---1490.
- 56. Zhang L., Dang F., Kaji N., Baba Y. J. Chromatogr. A, 2006, v. 1106, № 1-2, p. 175---180.
- 57. Consolandi C., Severgnini M., Frosini A., Caramenti G., De Fazio M., Ferrara F., Zocco A., Fischetti A., Palmieri M., De Bellis G. Anal. Biochem., 2006, v. 353, № 2, p. 191--197.
- 58. Matsubara Y., Kobayashi M., Morita Y., Tamiiya E. Arch. Histol. Cytol., 2002, v. 65, № 5, p. 481-488.

- 59. Schmidt U., Lutz-Bonengel S., Weisser H.J., Sanger T., Pollak S., Schon U., Zacher T., Mann W. Int. J. Legal. Med., 2006, v. 120, № 1, p. 42–48.
- 60. Pal D., Venkataraman V. Sens. Actuators A: Phys., 2002, v. 102, № 1-2, p. 151---156.
- 61. Shaw K.J., Docker P.T., Yelland J.V., Dyer C.E., Greenman J., Greenway G.M., Haswell S.J. Lab. Chip, 2010, v. 10, № 13, p. 1725—1728.
- 62. *Kim J., Byun D., Mauk M.G., Bau H.H.* Ibid., 2009, v. 9, № 4, p. 606—612.
- 63. Kopp M.U., de Mello A.J., Manz A. Science, 1998, v. 280, p. 1046—1048.
- 64. Nakayama T., Kurosawa Y., Furui S., Kerman K., Kobayashi M., Rao S.R., Yonezawa Y., Nakano K., Hino A., Yamamura S., Takamura Y., Tamiya E. Anal. Bioanal. Chem., 2006, v. 386, № 5, p. 1327–33.
- 65. Nakayama T., Hiep H.M., Furui S., Yonezawa Y., Saito M., Takamura Y., Tamiya E. Ibid., 2010, v. 396, № 1, p. 457–64.
- 66. Chabert M., Dorfman K.D., Cremoux P.d., J. R., Viovy J.L. Anal. Chem., 2006, v. 78, p. 7722-7728.
- 67. Schaerli Y., Wootton R.C., Robinson T., Stein V., Dunsby C., Neil M.A., French P.M., Demello A.J., Abell C., Hollfelder F. Ibid., 2009, v. 81, № 1, p. 302--6.
- 68. Kiss M.M., Ortoleva-Donnelly L., Beer N.R., Warner J., Bailey C.G., Colston B.W., Rothberg J.M., Link D.R., Leamon J.H. Ibid., 2008, v. 80, № 23, p. 8975—81.
- 69. Beer N.R., Wheeler E.K., Lee-Houghton L., Watkins N., Nasarabadi S., Hebert N., Leung P., Arnold D.W., Bailey C.G., Colston B.W. Ibid., 2008, v. 80, № 6, p. 1854—1862.
- 70. Daniel J.H., Iqbal S., Millington R.B., Moore D.F., Lowe C.R., Leslie D.L., Lee M.A., Pearce M.J. Sens. Actuators A: Phys., 1998, v. 71, № 1-2, p. 81–88.
- 71. Woolley A.T., Hadley D., Landre P., deMello A.J., Mathies R.A., Northrup M.A. Anal. Chem., 1996, v. 68, № 23, p. 4081—6.
- 72. *Heap D.M., Herrmann M.G., Wittwer C.T.* Biotechniques, 2000, v. 29, № 5, p. 1006–1012.
- 73. Khandurina J., McKnight T.E., Jacobson S.C., Waters L.C., Foote R.S., Ramsey J.M. Anal. Chem., 2000, v. 72, № 13, p. 2995-3000.
- 74. Сляднев М.Н., Лаврова М.В., Еркин М.А., Наволоцкий Д.В., Крисько А.В., Ганеев А.А. Научное приборостроение, 2007, т. 17, № 3, с. 25—30.
- 75. Krishnan M., Ugaz V.M., Burns M.A. Science, 2002, v. 298, № 5594, p. 793.
- 76. Chung K.H., Park S.H., Choi Y.H. Lab. Chip, 2010, v. 10, № 2, p. 202-210.
- 77. Oda R.P., Strausbauch M.A., Huhmer A.F., Borson N., Jurrens S.R., Craighead J., Wettstein P.J., Eckloff B., Kline B., Landers J.P. Anal. Chem., 1998, v. 70, № 20, p. 4361-4368.
- 78. Easley C.J., Karlinsey J.M., Bienvenue J.M., Legendre L.A., Roper M.G., Feldman S.H., Hughes M.A., Hewlett E.L., Merkel T.J., Ferrance J.P., Landers J.P. Proc. Natl. Acad. Sci. USA, 2006, v. 103, № 51, p. 19272–19277.
- 79. Roper M.G., Easley C.J., Legendre L.A., Humphrey J.A., Landers J.P. Anal. Chem., 2007, v. 79, № 4, p. 1294-1300.
- 80. Slyadnev M.N., Tanaka Y., Tokeshi M., Kitamori T. Ibid., 2001, v. 73, № 16, p. 4037—4044.

- 81. Braun D., Goddard N.L., Libchaber A. Phys. Rev. Lett., 2003, v. 91, № 15, p. 158103.
- Tanaka Y., Slyadnev M.N., Hibara A., Tokeshi M., Kitamori T. J. Chromatogr. A, 2000, v. 894, № 1-2, p. 45---51.
- 83. Sakakibara J., Adrian R.J. Exp. Fluids, 1999, v. 26, p. 7-15.
- 84. Mondal S., Venkataraman V. J. Biochem. Biophys. Methods, 2007, v. 70, № 5, p. 773-777.
- 85. Shah J.J., Gaitan M., Geist J. Anal. Chem., 2009, v. 81, № 19, p. 8260—8263.
- 86. Samy R., Glawdel T., Ren C.L. Ibid., 2007, v. 80, № 2, p. 369-375.
- 87. Hataoka Y., Zhang L., Yukimasa T., Baba Y. Anal. Sci., 2005, v. 21, № 1, p. 53—56.
- 88. Chen J., Wabuyele M., Chen H., Patterson D., Hupert M., Shadpour H., Nikitopoulos D., Soper S.A. Anal. Chem., 2005, v. 77, № 2, p. 658-666.
- 89. Lagally E.T., Scherer J.R., Blazej R.G., Toriello N.M., Diep B.A., Ramchandani M., Sensabaugh G.F., Riley L.W., Mathies R.A. Ibid., 2004, v. 76, № 11, p. 3162–3170.
- 90. Shandrick S., Ronai Z., Guttman A. Electrophoresis, 2002, v. 23, № 4, p. 591—595.
- 91. Marcus J.S., Anderson W.F., Quake S.R. Anal. Chem., 2006, v. 78, № 3, p. 956—958.
- 92. Hashimoto M., Barany F., Soper S.A. Biosens. Bioelectron., 2006, v. 21, № 10, p. 1915-1923.
- 93. Defever T., Druet M., Rochelet-Dequaire M., Joannes M., Grossiord C., Limoges B., Marchal D. J. Am. Chem. Soc., 2009, v. 131, № 32, p. 11433—11441.
- 94. Fang T.H., Ramalingam N., Xian-Dui D., Ngin T.S., Xianting Z., Lai Kuan A.T., Peng Huat E.Y., Hai-Qing G. Biosens. Bioelectron., 2009, v. 24, № 7, p. 2131–2136.
- 95. Breadmore M.C., Wolfe K.A., Arcibal I.G., Leung W.K., Dickson D., Giordano B.C., Power M.E., Ferrance J.P., Feldman S.H., Norris P.M., Landers J.P. Anal. Chem., 2003, v. 75, № 8, p. 1880--1886.
- 96. Wilding P., Kricka L.J., Cheng J., Hvichia G., Shoffner M.A., Fortina P. Anal. Biochem., 1998, v. 257, № 2, p. 95-100.
- 97. O' Grady J., Sedano-Balbas S., Maher M., Smith T., Barry T. Food Microbiol., 2008, v. 25, № 1, p. 75-84.
- 98. Yuen P.K., Kricka L.J., Fortina P., Panaro N.J., Sakazume T., Wilding P. Genome Res., 2001, v. 11, № 3, p. 405—412.
- 99. Yobas L., Cheow L.F., Tang K.C., Yong S.E., Ong E.K., Wong L., Teo W.C., Ji H., Rafeah S., Yu C. Biomed. Microdevices, 2009, v. 11, № 6, p. 1279–1288.
- 100. Beyor N., Yi L., Seo T.S., Mathies R.A. Anal. Chem., 2009, v. 81, № 9, p. 3523—3528.
- 101. Yeung S.H., Liu P., Del Bueno N., Greenspoon S.A., Mathies R.A. Ibid., 2009, v. 81, № 1, p. 210-217.
- 102. Bienvenue J.M., Legendre L.A., Ferrance J.P., Landers J.P. Forensic. Sci. Int. Genet., 2010, v. 4, № 3, p. 178---186.
- 103. Lee H.J., Kim J.H., Lim H.K., Cho E.C., Huh N., Ko C., Park J.C., Choi J.W., Lee S.S. Lab. Chip, 2010, v. 10, № 5, p. 626--633.
- 104. Wang J.-H., Chien L.-J., Hsieh T.-M., Luo C.-H., Chou W.-P., Chen P.-H., Chen P.-J., Lee D.-S., Lee G.-B. Sens. Actuators B: Chem., 2009, v. 141, № 1, p. 329--337.