Кристаллохимия: строение кристаллических веществ и материалов

Принципы строения тройных соединений

Тройные (тернарные) соединения $A_n B_m X_p$

1. Близкие радиусы катионов А и В:

Заполнение катионами А и В разных пустот в плотной либо плотнейшей упаковке анионов Х.

в частности,

Заполнение катионных позиций в «бинарном» структурном типе атомами A и B:

а: статистическое заполнение,

б: сверхструктура,

в: чередование A и B в ковалентном мотиве M_nX_m

2. Разные радиусы A и B, R(A)>R(B):

Заполнение катионами В пустот в совместной упаковке, из анионов X и катионов A.

- 3. Внедрение катионов A^{p+} в пустоты мотива $[B_n X_m]^{q-}$
- 4. Структурные типы с дефектами: (A_nB_{m-y}□_y)X_p

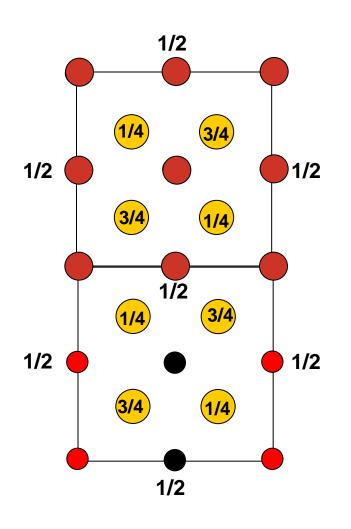
Заполнение пустот в упаковках анионов

1. Чередование элементов в «бинарных» структурных типах (сверхструктура)

ZnS (сфалерит) \rightarrow CuFeS₂ (халькопирит)

 $NaCI \rightarrow \alpha-NaFeO_2$, Li_2PtO_3

 α -Al₂O₃ (корунд) \rightarrow FeTiO₃ (ильменит), и т.д.


2. Заполнение разных пустот разными катионами

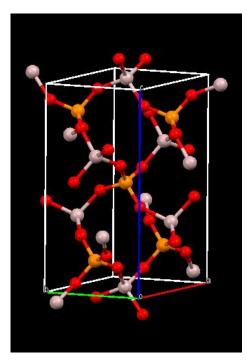
 $MgAl_2O_4$, $FeCr_2O_4$, $Fe_3O_4 = Fe^{2+}Fe^{3+}_2O_4$ (шпинели)

3. Заполнение пустот в смешанных катион-анионных упаковках

CaTiO₃, BaTiO₃, KMnF₃ (перовскиты); ReO₃, Na_xWO₃

Халькопирит CuFeS₂

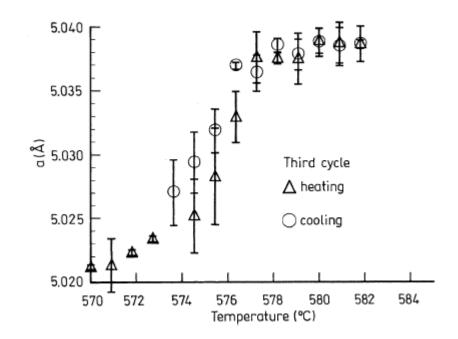
Талнахит Cu_{0.5}Fe_{0.5}S:


тип сфалерита, кубический, Z=4 атомы Cu и Fe (1:1) статистически занимают позиции Zn

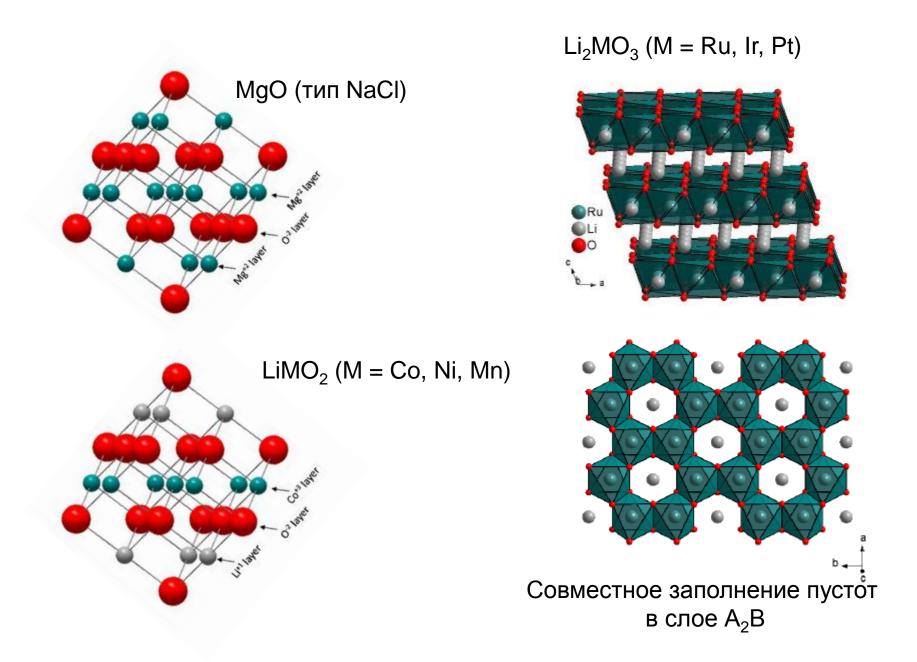
Халькопирит CuFeS₂:

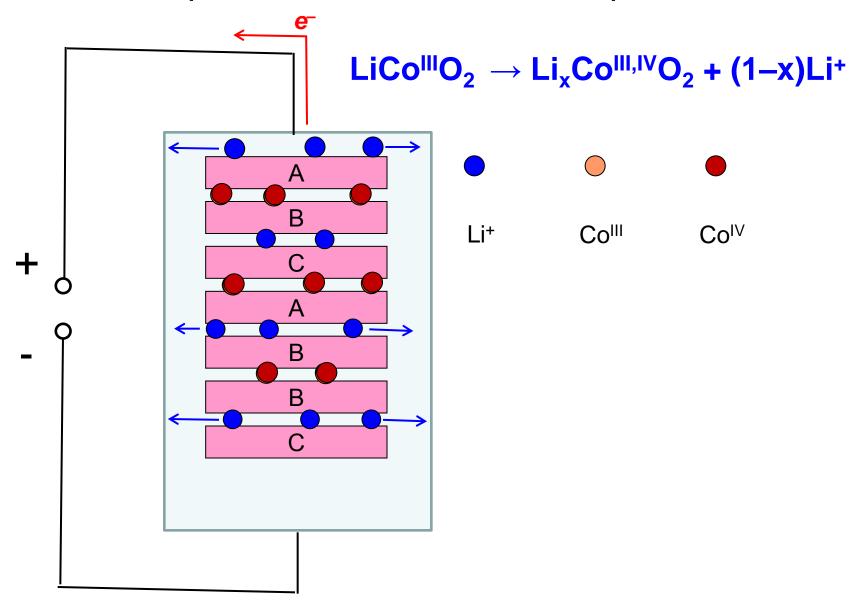
удвоенная ячейка, тетрагональный, Z=4, атомы Cu и Fe чередуются в позициях Zn

пример сверхструктурного упорядочения

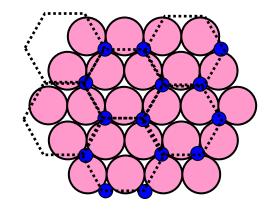

ABO₄: чередование A и B в ковалентном 3D-каркасе

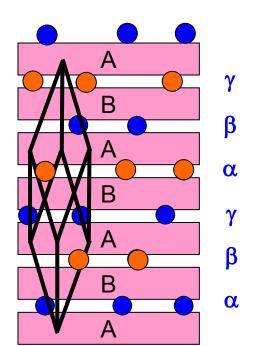
 MPO_4 (M = AI, Ga, Fe) изоструктурны формам SiO_2


 $AIPO_4$: « α -кварц» \rightarrow « β -кварц» \rightarrow «тридимит» \rightarrow «кристобалит»



Y.Muraoka, K.Kihara, Phys Chem Minerals, 1997, **24**, 243–253


Сверхструктурное заполнение октаэдрических пустот катионами А и В в типе NaCl



Как заряжается литиевая батарейка

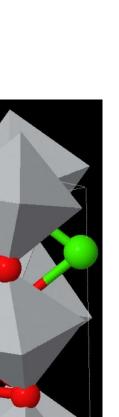
Ильменит FeTiO₃

Выводится из структуры α –Al₂O₃(корунда)

Простр. группа \mathbf{R} $\mathbf{\bar{3}}$, $\mathbf{Z=6}$

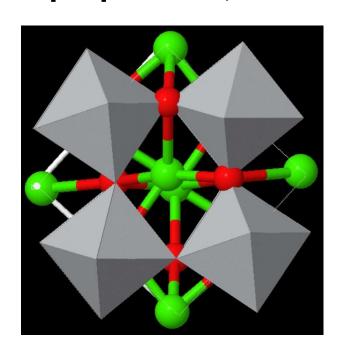
a = 5.082 Å, c = 14.027 Å

(у корунда a = 4.758 Å, c = 12.991 Å)

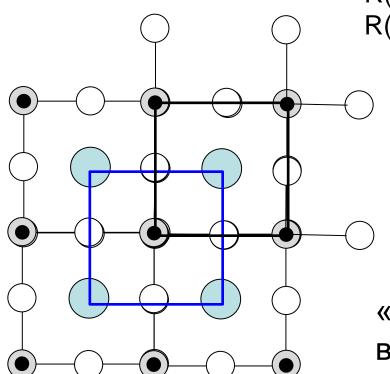

 $\alpha = \beta = 90^{\circ}, \gamma = 120^{\circ}$

чередование атомов **Fe** и **Ti**

в позициях **AI** структуры корунда


(«сверхструктура»)

CaTiO₃ перовскит

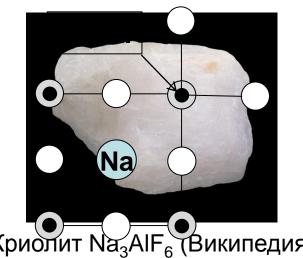

Лев Алексеевич Перовский (1792–1856); министр внутренних дел Российской империи в 1841 – 1852 г.г.

Пр. гр. Pcmn, Z=4

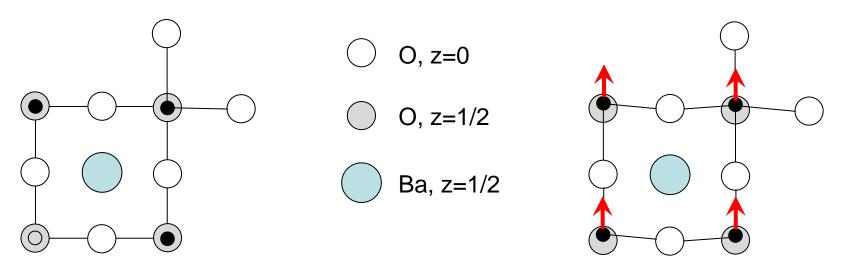
Проекция вдоль направления с

Структурный тип перовскита АВО3

 $R(A^{2+})/R(O^{2-}) < 0.7$ – ильменит $R(A^{2+})/R(O^{2-}) > 0.7$ – перовскит

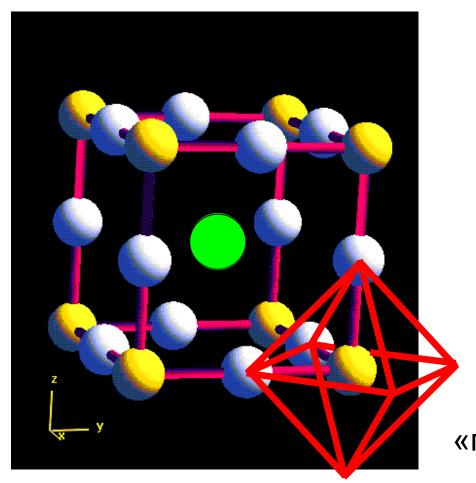

Простр. группа: P m 3 m, Z=1 атом В в позиции 0 0 0 (к.ч. 6, КП – октаэдр)

атом А в позиции 0 0 0


(к.ч. 12, КП – кубооктаэдр)

«КПУ» атомов **A + 3O**; атомы В в 1/4 всех октаэдрических пустот

Родственные структуры: тип *криолита* $Na_3AIF_6=Na_2(Na,AI)F_6$: 2 Na+ в позициях A, Na+ и AI³⁺ в позициях B T_{nn} 1012 °C; растворяет оксиды AI, используется в электролитическом получении алюминия


Переход ВаТіО₃ в сегнетоэлектрическую фазу

>120 °C: диэлектрическая («параэлектрическая») фаза, Кубический, Р m $\overline{3}$ m, Z=1, атом Ti в позиции 0,0,0, атом Ва в позиции $\frac{1}{2}$, $\frac{1}{2}$. $\frac{1}{2}$ Катионы Ti⁴⁺ разупорядочены вокруг центров слишком больших для них октаэдрических пустот. РСА определяет центр «облака» $\rho_{9л}$ в центре октаэдра TiO₆, суммарный дипольный момент элементарной ячейки = 0

<120 °C: сегнетоэлектрическая («ферроэлектрическая») фаза, Тетрагональный, Р 4mm, Z=1 Катионы Ti^{4+} упорядочены в позициях, ~на 0.1 Å сдвинутых к одной вершине октаэдра TiO_6 по координатной трансляции \mathbf{c} . Дипольный момент элементарной ячейки $\neq 0$, спонтанная поляризация доменов (без внешнего поля — равномерно по всем направлениям: \mathbf{a} , \mathbf{b} и \mathbf{c}). «Полярный» кристаллографический класс 4mm

Структурный тип ReO₃

ReO₃

Rhenium oxide

Space group: $P m \overline{3} m$

Unit cell dimensions:

a = 3.748 Å, Z=1

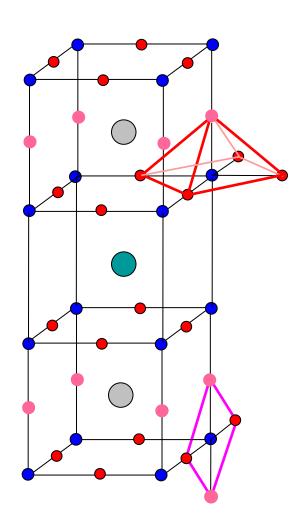
Atomic positions:

Re at (0, 0, 0)

O at (1/2, 0, 0)

«перовскит АВО₃ без атома А»

 Na_xWO_3 : структурный тип перовскита, 0 < x < 1


Высокотемпературный сверхпроводник «1-2-3» YBa₂Cu₃O_{7-x}

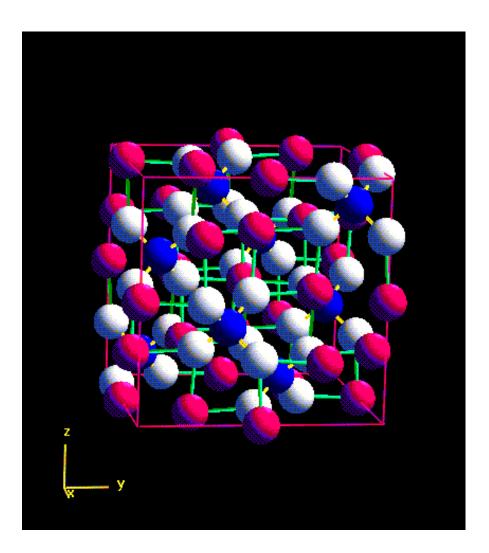
Ba

двойной дефектный перовскитовый слой

Структура и состав ВТСП

- **Y**
- Ba
- Cu
- O

$$Y^{III}Ba^{II}_{2}Cu^{II}_{3}O_{6.5+x}$$


$$a = 3.888$$

$$b = 11.693$$

$$c = 3.818 \text{ Å}$$

$$T_c = 92 \text{ K}$$

Тип шпинели AB_2O_4

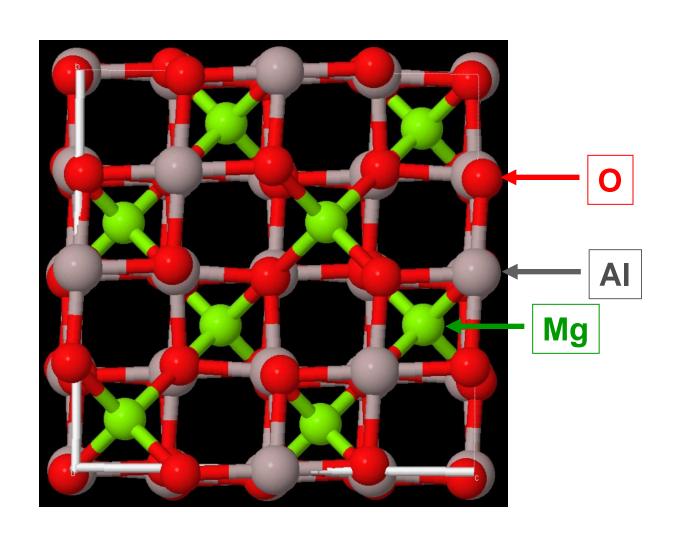
MgAl₂O₄ Spinel

Space group: Fd 3 m

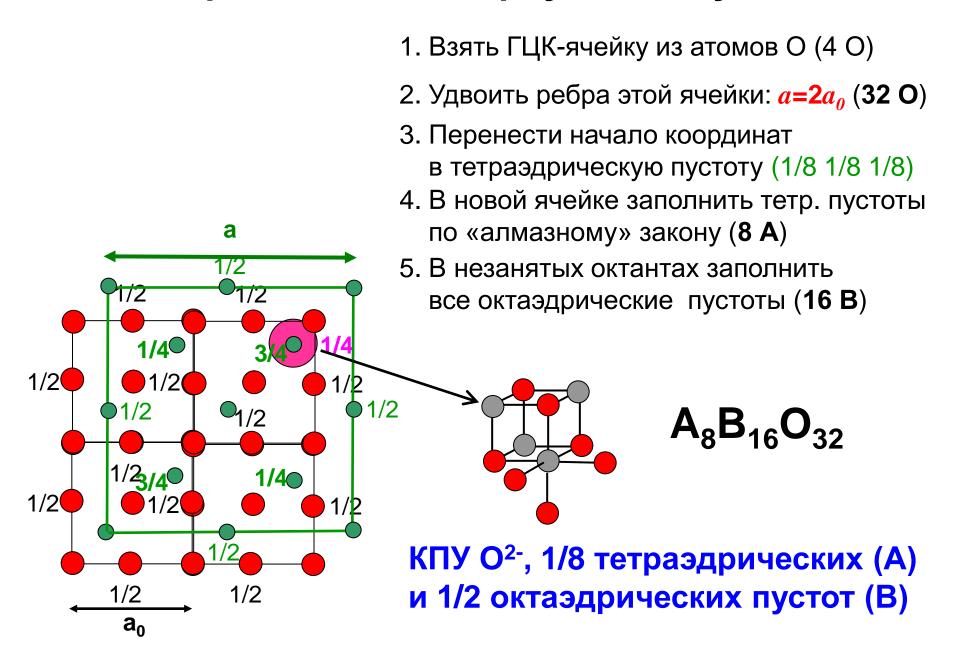
Unit cell dimensions:

a = 8.075 Å , Z = 8

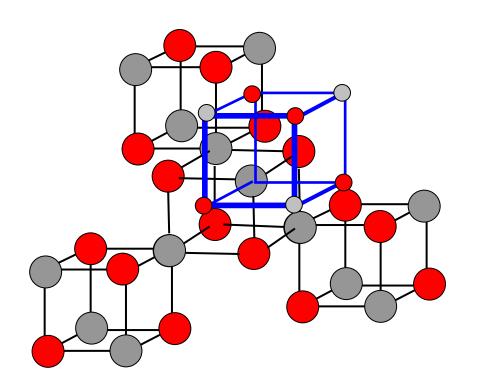
Atomic positions:


Mg at (0, 0, 0)

Al at (5/8, 5/8, 5/8)


O at (0.387, 0.387, 0.387)

 $NiFe_2O_4$, $Fe_3O_4 = Fe^{||}Fe^{|||}_2O_4$ многие магнитные материалы


Элементарная ячейка MgAl₂O₄ (проекция вдоль [100])

Как построить элементарную ячейку шпинели

Фрагменты типа NaCl в 4 октантах ячейки шпинели (выделен ближайший октант)

Описание в терминах упаковок: КПУ О²-, заняты 1/8 тетраэдрических (А) и 1/2 октаэдрических пустот (В)

Виды шпинелей

Нормальная шпинель: $AB_2O_4 = A^{\text{тетр}}(B^{\text{окт}})_2O_4$ $MgAl_2O_4$, $ZnFe_2O_4$, Co_3O_4 = $Co^{||}Co^{||}|_2O_4$

Обращенная шпинель: $B(AB)O_4 = B^{\text{тетр}}(A^{\text{окт}}B^{\text{окт}})O_4$ $MgFe_2O_4$, $Mg_2TiO_4 = Mg^{\text{II}}(Mg^{\text{II}},Ti^{\text{IV}})O_4$, Fe_3O_4 (магнетит) = $Fe^{\text{III}}(Fe^{\text{II}},Fe^{\text{III}})O_4$

Промежуточные заселенности (смешанная шпинель), Магнитные переходы

 γ -**Fe₂O₃**: кубическая сингония, дефектная шпинель Fe_{~21.7}O₃₂=Fe^{III}(_{1/3}Fe^{III}_{5/3})O₄, также γ -**Al₂O₃**

Халькошпинели MCr_2X_4 (M=Cd, Hg, Cu, Zn; X = S, Se. Te)

А.Вест, Химия твердого тела, т.2, разд. 16.3