[предыдущий раздел] [содержание] [следующий раздел]

4. Хиноны

Хиноны по своей структуре являются циклогексадиенонами, но их название происходит от ароматических углеводородов: бензохинон от бензола, толухинон от толуола, нафтохинон от нафталина и т.д. Цифры в начале названия обозначают положение двух карбонильных групп.

Многие производные хинонов составляют важную группу природных веществ - красителей, пигментов, антибиотиков, витаминов и т.д.

Производные 9,10-антрахинона широко используются в качестве синтетических антрахиноновых красителей для хлопка, шерсти и синтетических волокон. Эти красители отличаются яркостью цвета, высокой термической и фотохимической устойчивостью. Выше в качестве примера приведены формулы некоторых антрахиноновых красителей. Эти красители получают из 2-аминоантрахинона и его производных, например:

[предыдущий раздел] [содержание] [следующий раздел]

4.1. Получение хинонов

Хиноны получают окислением одно- и двухатомных фенолов, аминов и диаминов ароматического ряда. Самый удобный способ получения хинонов заключается в окислении одноатомных фенолов солью Фреми - нитрозодисульфонатом калия. Эта реакция осуществляется в исключительно мягких условиях в водном спирте или ацетоне, выход обычно превышает 90%.

Приведенный на этой схеме циклогексадиеноновый интермедиат был выделен, что доказывает механизм одноэлектронного окисления фенолов солью Фреми. Другим одноэлектронным окислителем фенолов является карбонат серебра. Этот реагент, согласно данным последних лет, особенно пригоден для окисления 1,2-дигидроксибензола и его производных до орто-хинона.

Уникальным реагентом для получения орто-хинонов из одноатомных фенолов оказался (С6Н5SeO)2O.

Для окисления фенолов, ароматических аминов и гидрохинонов до 1,4-бензохинонов и 1,4-нафтохинонов часто используют реагенты на основе хрома (YI). К ним относятся оксид хрома (YI) в уксусной кислоте или реагент Килиани (дихромат натрия и серной кислоты), однако выходы хинонов, как правило, ниже, чем при окислении солью Фреми или карбонатом серебра.

1,4-нафтохинон, 9,10-антрахинон и 9,10-фенантренхинон могут быть получены прямым окислением углеводородов оксидом хрома (YI) в уксусной кислоте или бихроматом натрия в серной кислоте.

В промышленности тот же самый результат достигается при окислении кислородом в присутствии оксида ванадия (Y) как катализатора. Таким способом можно получать антрахинон и фенантренхинон.

9,10-Антрахинон получают также ацилированием бензола фталевым ангидридом по Фриделю-Крафтсу с последующей циклизацией орто-бензоилбензойной кислоты.

Этот один из самых простых и старых способов промышленного получения антрахинона.

[предыдущий раздел] [содержание] [следующий раздел]

4.2. Химические свойства хинонов

4.2.1.Восстановление хинонов

Наиболее важной реакцией хинонов является их восстановление до двухатомных фенолов. Восстановление хинонов осуществляется в две стадии. На первой стадии в результате одноэлектронного восстановления образуются анион-радикалы, которые называют также семихинонами. Эти частицы могут быть легко зарегистрированы с помощью ЭПР-спекроскопии. На второй стадии анион-радикал присоединяет еще один электрон с образованием дианиона двухатомного фенола.

Способность хинона восстанавливаться до двухатомного фенола, т.е. свойство его как окислителя, оценивается с помощью нормального редокс-потенциала, определяемого из уравнения Нернста для реакции

Величина Ео представляет собой нормальный потенциал, характерный для каждой системы хинон-гидрохинон, при равных концентрациях хинона и гидрохинона и концентрации ионов водорода, равной единице. Таким образом, Ео является количественной характеристикой окислительной способности хинона. В таблице 3 приведены значения нормальных редокс-потенциалов Ео для некоторых хинонов в воде при 25оС.

Таблица 3

Величины нормальных редокс-потенциалов Ео некоторых хинонов в воде при 25оС

Хинон

Ео в мв

Хинон

Ео в мв
1,2-бензохинон 783 2,3-дихлор-1,4-нафтохинон 499
1,4-бензохинон 700 9,10-антрахинон 130
2-метил-1,4-бензохинон 645 1,4-антрахинон 400
2-хлор-1,4-бензохинон 713 9,10-фенантренхинон 440
1,2-нафтохинон 566 1,4-фенантренхинон 520
1,4-нафтохинон 470 1,6-пиренхинон 610
2,6-нафтохинон 758 3,4,5,6-тетрахлор-1,4-бензохинон 740
2-метил-1,4-нафтохинон 422 дифенохинон 954

Из данных, представленных в таблице 3 следует, что 1,2-хиноны более сильные окислители, чем 1,4-хиноны, а бензохиноны превосходят по окислительной способности хиноны нафталинового ряда, которые в свою очередь превосходят антрахиноны и фенантренхиноны. Электроноакцепторные группы усиливают окислительные свойства хинонов. Высокие редокс-потенциалы хинонов определяются тем, что восстановление хинона в двухатомный фенол сопровождается превращением ненасыщенного кетона в ароматическое соединение.

Восстановление хинонов до двухатомных фенолов осложняется образованием хингидрона - аддукта состава 1:1 между хиноном и двухатомным фенолом. Хингидрон может быть окислен до хинона или нацело восстановлен до гидрохинона.

Окрашенный в темнозеленый цвет хингидрон представляет собой классический пример молекулярных комплексов, где один компонент служит донором, а другой - является акцептором электрона. Такие комплексы, где происходит перекрывание ВЗМО донора и НСМО акцептора, получили название комплексов с переносом заряда. К ним относятся -комплексы ароматических соединений с галогенами, катионами серебра и ртути; 1,3,5-тринитробензолом, пикриновой кислотой. Комплексы галогенов или тетрацианоэтилена с n-донорами (спиртами, простыми эфирами) или -донорами - (алкенами или алкинами), также следует рассматривать как комплексы с переносом заряда. В кристаллах хингидрона молекулы хинона и гидрохинона чередуются и располагаются в двух параллельных плоскостях друг над другом. Комплексы с переносом заряда часто интенсивно окрашены. Так, например, тетрацианоэтилен образует с дуролом (1,2,4,5-тетраметилбензолом) комплекс, окрашенный в красный цвет. Окраска комплексов обусловлена переносом заряда от ароматического донора к акцептору, хотя степень переноса заряда невелика и редко превышает 0,1 заряда электрона.

Восстановление хинонов до двухатомных фенолов проводят с помощью самых разнообразных восстановителей, среди которых в лабораторных условиях предпочтение отдается дитиониту натрия Na2S2O4 в щелочной среде.

Помимо дитионита натрия в качестве восстановителей употребляются алюмогидрид лития и боргидрид натрия, хлорид олова (II) в соляной кислоте, цинк в уксусной кислоте и др. В промышленности восстановление 1,4-бензохинона до гидрохинона осуществляется с помощью оксида серы (IY) и железа в воде при 70-80оС.

9,10-Антрахинон при восстановлении дитионитом натрия образует 9,10-антрадиол (антрагидрохинон).

При восстановлении 9,10-антрахинона оловом в смеси соляной и уксусной кислот получается антрон - простейший кетон ряда антрацена.

Восстановление антрахиноновых и других кубовых красителей дитионитом натрия в щелочной среде используется для перевода этих нерастворимых в воде соединений в так называемую лейкоформу, которая в виде динатриевой соли хорошо растворима в воде. Таким образом, например, упомянутый выше индантрен восстанавливают в тетрагидропроизводное, имеющее четыре фенольных гидроксила. Это лейкопроизводное хорошо растворимое в воде. Хлопчатобумажную ткань пропитывают раствором лейкоформы и выдерживают на воздухе. Лейкоформа окисляется кислородом до исходного красителя. Такой способ крашения гарантирует однородность окраски ткани. Он применяется при крашении индигоидными и другими кубовыми красителями.

[предыдущий раздел] [содержание] [следующий раздел]

4.2.2. Хиноны как дегидрирующие агенты

Легкость восстановления хинонов до фенола открывает возможность для использования хинонов в качестве дегидрирующих агентов. Для этой цели выбирают хиноны с высоким окислительно-восстановительным потенциалом, такие как 2,3,5,6-тетрахлор-1,4-бензохинон (хлоранил); 2,3-дихлор-5,6-дициано-1,4-бензохинон (ДДХ), дифенохинон. 1,2-Хиноны ввиду нестабильности практически не используются в качестве дегидрирующих агентов. Дегидрированию подвергаются дигидроароматические соединения ряда бензола и тетрагидропроизводные ряда нафталина, антрацена, гетероциклических соединений, тропилиден и т.д.

Механизм дегидрирования углеводородов заключается в отщеплении хиноном гидрид-иона с образованием карбокатиона, который стабилизируется отщеплением протона. Поэтому дегидрированию подвергаются углеводороды, которые при отщеплении гидрид-иона образуют сравнительно стабильные карбокатионы.

[предыдущий раздел] [содержание] [следующий раздел]

4.2.3. Хиноны как ,-непредельные кетоны

1,4-Хиноны представляют собой типичные ,-ненасыщенные кетоны и для них характерны реакции 1,2- и 1,4-присоединения к сопряженной системе. 1,4-Бензохинон присоединяет хлористый водород в 1,4-положение с образованием 2-хлоргидрохинона.

2-Хлоргидрохинон окисляется исходным хиноном до 2-хлор-1,4-бензохинона, который вновь присоединяет HCl с образованием 2,3-дихлоргидрохинона.

Этот прием используется для синтеза 2,3-дихлор-5,6-дициано-1,4-бензохинона (ДДХ).

Вместе с тем 1,4-хиноны вступают в типичные реакции 1,2-присоединения по карбонильной группе и с гидроксиламином дают моно- и диоксимы. Однако для первичных аминов характерно сопряженное присоединение к 1,4-хинонам. При взаимодействии 1,4-бензохинона с анилином получается 2,5-бис(фениламино)-1,4-бензохинон.

Аналогично происходит присоединение к 1,4-бензохинону и 1,4-нафтохинону тиолов, малонового и циануксусного эфиров.

[предыдущий раздел] [содержание] [следующий раздел]

4.2.4. Хиноны как диенофилы в реакции диенового синтеза

1,4-Бензохинон, 1,4-нафтохинон и их производные проявляют свойства активных диенофилов в реакции Дильса-Альдера. При взаимодействии 1,3-бутадиена с 1,4-бензохиноном при 25оС получается моноаддукт, который медленно енолизуется с образованием соответствующего гидрохинона. Это превращение, как и следовало ожидать, катализируется кислотой. При последующем окислении оксидом хрома (YI) получается 1,4-нафтохинон.

При нагревании 1,4-бензохинон присоединяет по двум двойным связям две молекулы 1,3-бутадиена. Стереохимия циклоприсоединения циклопентадиена к 1,4-бензохинону иллюстрирует высокую стереоселективность диенового синтеза с участием хинонов. Из четырех возможных стереоизомеров получается только эндо-цис-аддукт 1:1. Присоединение второй молекулы циклопентадиена происходит также стереоспецифично.

Электроноакцепторные заместители в хиноне активируют диенофил, а электронодонорные заместители замедляют присоединение 1,3- диенов. ДДХ и 1,2,3,5-тетрациан-1,4-бензохинон исключительно эффективны в качестве диенофилов. Диеновый синтез с участием 1,4-бензохинона используется для получения полициклических конденсированных ароматических углеводородов. В качестве примера приведем синтез пентацена из 1,2-диметиленциклогексана и 1,4-бензохинона.

 

[предыдущий раздел] [содержание]

Заключение

В заключение этого раздела следует отметить, что на протяжении длительного времени хиноны привлекали к себе интерес в производстве огромного количества высококачественных антрахиноновых красителей. Они широко использовались в качестве дегидрирующих агентов. В настоящее время интерес к этому классу соединений снова возрос после того, как было установлено, что целая группа хинонов играет жизненно важную роль переносчика электронов в дыхательных и фотохимических цепях биологических систем. В живых организмах эту роль транспорта электронов в дыхательных цепях в клетках выполняет группа коферментов Q, называемых убихинонами. В природе встречается несколько коферментов Q. Они отличаются друг от друга лишь числом изопреновых единиц, связанных с бензохиноновым кольцом. В организме человека важную роль играет кофермент Q10 (см. вводную часть к данному разделу). Подробные сведения о механизме действия хиноновых коферментов в аэробных системах можно найти в учебниках и монографиях по биоорганической химии.

[предыдущий раздел] [содержание]