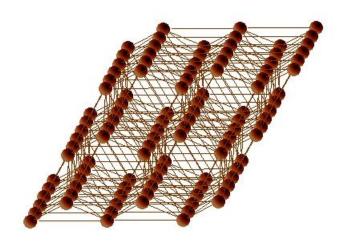
Элементы 4й группы

Подгруппа титана

3	<u>4</u>	5	6	7	8	9	10	11	12
									,
Sc	Ti	V	Cr	Mn	Fe	Со	Ni	Cu	Zn
Y	Zr	Nb	Мо	Тс	Ru	Rh	Pd	Ag	Cd
La	Hf	Та	W	Re	Os	Ir	Pt	Au	Hg


Ті – титан, Zr – цирконий, Hf – гафний

Подгруппа титана

	Ti	Zr	Hf
At. Nº	22	40	72
Эл. Конф.	$3d^24s^2$	$4d^25s^2$	$4f^{14}5d^26s^2$
R(ат.), пм	145	160	160
I ₁ , эВ	6.82	6.84	6.78
I ₂ , эВ	13.58	13.13	14.90
I ₄ , эВ	43.3	34.3	33.3
$\chi(A-R)$	1.32	1.22	1.23
C.O.	(2),3,4	(2),(3),4	(3),4

Свойства металлов

	Ti	Zr	Hf
Т.пл., °С	1668	1857	2227
Т.кип., ∘С	3330	4340	4625
d, г/см ³	4.51	6.50	13.09
$E^{0}(MO^{2+}/M^{0}), B$	-0.88	-1.57	-1.70

Плотнейшая гексагональная упаковка, структура типа Mg

- 1. Металлы устойчивы к коррозии покрыты оксидной пленкой
- 2. Ti, Zr, Hf окисляются кислородом при высокой температуре

$$Ti + O_2 = TiO_2$$

- 3. Пассивируются в HNO_3 (конц)
- 4. Не реагируют с растворами щелочей
- 5. Реагируют с водяным паром при нагревании $Zr + 2H_2O = ZrO_2 + 2H_2$ (700 °C)

6. Растворяются в H₂SO₄ (конц) при 100 ⁰C:

$$Zr + 5H_2SO_4 = H_2[Zr(SO_4)_3] + 2SO_2 + 4H_2O$$

7. Растворяются в кислотах-окислителях в присутствии F-

$$3Zr + 4HNO_3 + 18HF = 3H_2[ZrF_6] + 4NO + 8H_2O$$

$$Hf + 4HNO_3 + 8HF = H_4[HfF_8] + 4NO_2 + 4H_2O$$

8. Ті, Zr, Hf окисляются галогенами

$$Ti + 2Cl_2 = TiCl_4$$

$$Zr + 2Br_2 = ZrBr_4$$

$$Zr + I_2 = ZrI_2$$

TiCl₄ Т.пл. = −23 °C

9. Только Ті растворим в HCI и HF

$$2\text{Ti} + 6\text{HCI} = 2\text{TiCI}_3 + 3\text{H}_2$$
 Ti^{3+}
 $2\text{Ti} + 12\text{HF} = 2\text{H}_3[\text{TiF}_6] + 3\text{H}_2$ Ti^{3+}
 $1\text{Ti} + 6\text{HF} + 0_2 = \text{H}_2[\text{TiF}_6] + 2\text{H}_2\text{O}$ Ti^{4+}

10. Только Ті растворим в щелочах при нагревании

$$Ti + 2KOH + H_2O = K_2TiO_3 + 2H_2$$
 Ti^{4+}

11. Только Ті реагирует с HNO₃ (конц) при нагревании

$$Ti + 4HNO_3 = TiO_2 \cdot H_2O \downarrow + 4NO_2 + H_2O$$
 Ti^{4+}

12. Ti, Zr, Hf реагируют с неметаллами

$$2Ti + 3S = Ti_2S_3$$

$$Zr + 2S = ZrS_2$$

$$Zr + C = ZrC$$

$$Zr + P = ZrP$$

$$2Ti + N_2 = 2TiN$$

13. Растворяют водород и реагируют с ним

$$2Zr + H_2 = 2ZrH$$

$$Zr + H_2 = ZrH_2$$

14. Образуют интерметаллические соединения со

многими металлами: TiAl₃, TiZn₂, CuZr, Co₂Hf, ZrNiSn

Минералы Ti, Zr, Hf

Распространенность (мас.%):

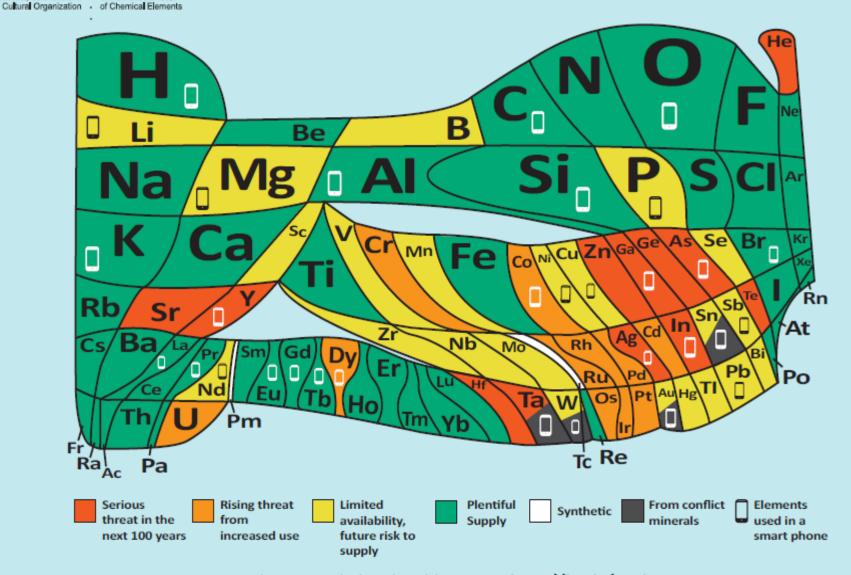
Ti 0.63; Zr 0.02; Hf 0.0004

Основные минералы:

TiO₂ рутил FeTiO₃ ильменит

CaTiO₃ перовскит

ZrO₂ бадделит ZrSiO₄ циркон


Hf не образует собственных минералов

The 90 natural elements that make up everything

International Year Educational, Scientific and - of the Periodic Table How much is there? Is that enough?

Read more and play the video game http://bit.ly/euchems-pt

Получение Ті

Вскрытие руды:

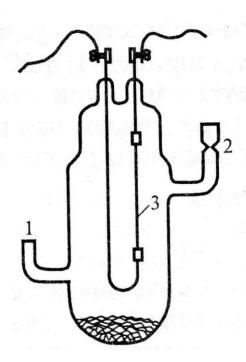
$$2FeTiO_3 + 6C + 7CI_2 = 2TiCI_4 + 2FeCI_3 + 6CO$$

Выделение металла:

$$TiCl_4 + 2Mg = Ti + 2MgCl_2$$

Очистка:

$$Ti + 2I_2 \Leftrightarrow TiI_4$$


Химическая

транспортная реакция

синтез: 200 °С

перенос: 370 °С

разложение: 1000 °C

Метод Ван Аркеля – Де Бура

Получение Zr

Хлорное или сернокислое вскрытие минералов:

$$ZrO_2 + 2C + 2CI_2 = ZrCI_4 + 2CO$$

$$ZrO_2 + H_2SO_4 = ZrOSO_4 + H_2O$$

Перевод во фторидный комплекс:

$$ZrOSO_4 + 4KF + 2HF = K_2[ZrF_6] + H_2O + K_2SO_4$$

Восстановление:

$$K_2[ZrF_6] + 4Na = Zr + 4NaF + 2KF$$

 $ZrCI_4 + 2Mg = 2MgCI_2 + Zr$

Очистка:

$$Zr + 2I_2 \Leftrightarrow ZrI_4$$

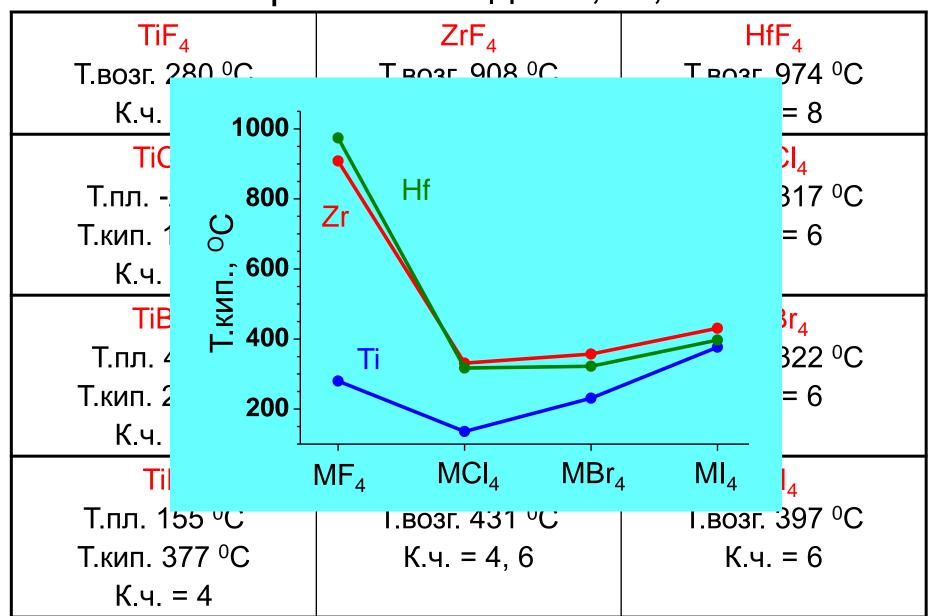
Применение Ti, Zr, Hf

- Ti четвертый по распространенности среди конструкционных металлов (после Al, Fe, Mg)
- •в авиационной и космической технике, судостроении
- •в электронике, гальванотехнике
- •в медицине, пищевой промышленности
- •в качестве белил (TiO₂) и покрытий (TiN)

Zr:

- •в металлургии, в составе жаропрочных сплавов
- •как отражатель нейтронов

Hf:


•Как поглотитель нейтронов

Тетрагалогениды Ti, Zr, Hf

ТіF ₄ Т.возг. 280 °С К.ч. = 6	ZrF ₄ Т.возг. 908 °С К.ч. = 8	HfF₄ Т.возг. 974 ^о С К.ч. = 8
TiCl ₄ Т.пл23 ⁰ С Т.кип. 136 ⁰ С К.ч. = 4	ZrCl ₄ Т.возг. 331 ^о С К.ч. = 6	HfCl ₄ Т.возг. 317 ^о С К.ч. = 6
TiBr ₄ Т.пл. 40 ^о С Т.кип. 231 ^о С К.ч. = 4	ZrBr ₄ Т.возг. 357 ^о С К.ч. = 6	HfBr ₄ Т.возг. 322 ⁰ С К.ч. = 6
Til ₄ Т.пл. 155 ⁰ С Т.кип. 377 ⁰ С К.ч. = 4	<mark>Zrl₄</mark> Т.возг. 431 ^о С К.ч. = 4, 6	HfI ₄ Т.возг. 397 ^о С К.ч. = 6

Тетрагалогениды Ti, Zr, Hf

Получение и свойства МХ₄

1. Получают взаимодействием элементов или из оксидов $Ti + 2Br_2 = TiBr_4$ $ZrO_2 + C + Cl_2 = ZrCl_4$

2. Все МХ₄ гигроскопичны

$$TiBr_4 + 2H_2O = TiO_2 + 4HBr$$

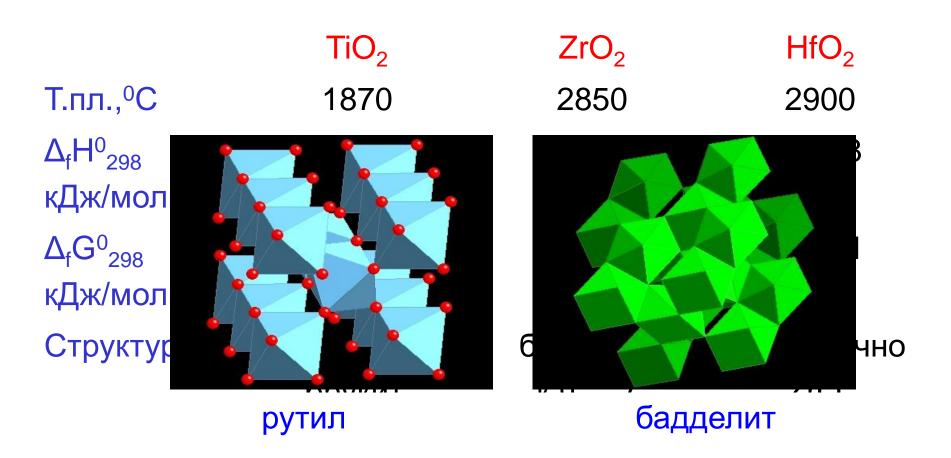
 $ZrCl_4 + H_2O = ZrOCl_2 + 2HCl$
 $ZrOCl_2 + H_2O = ZrO_2 + 2HCl$

3. Образуют комплексы

$$ZrF_4 + 2KF \xrightarrow{HF} K_2[ZrF_6]$$
 $ZrF_4 + 3KF \xrightarrow{HF} K_3[ZrF_7]$ $TiCl_4 + 2HCl = H_2[TiCl_6]$ гексахлоротитановая кислота

4. TiX_4 – кислоты Льюиса, растворимы в неполярных растворителях (кроме TiF_4) $TiCl_4 + PCl_3 = TiCl_4 \cdot PCl_3$

Низшие галогениды Ti, Zr, Hf


TiF ₃	TiCl ₃	TiBr ₃	Til ₃
	TiCl ₂	TiBr ₂	TiBr ₂
	ZrCl ₃	ZrBr ₃	Zrl ₃
	ZrCl ₂	ZrBr ₂	Zrl ₂
	ZrCl	ZrBr	ZrI
	HfCl ₃	$HfBr_3$	Hfl ₃
TiCl ₂	HfCl ₂ (?)		
	HfCI		

$$2\text{TiCl}_4 + \text{H}_2 \xrightarrow{400 \text{ °C}} 2\text{TiCl}_3 + 2\text{HCl}$$
 $2\text{TrCl}_4 + 3\text{Zr} \xrightarrow{850 \text{ °C}} 4\text{ZrCl}$

Диоксиды Ti, Zr, Hf

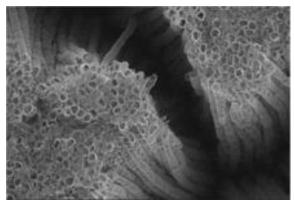
	TiO ₂	ZrO_2	HfO ₂
Т.пл.,0С	1870	2850	2900
$\Delta_{\mathrm{f}}H^{0}_{298}$	-944	-1100	–1118
кДж/моль			
$\Delta_{f}G^{0}_{298}$	-889	-1043	-1061
кДж/моль			
Структура	рутил,	бадделит,	аналогично
	брукит,	к.ч. = 7;	ZrO_2
	анатаз,	флюорит,	
	к.ч. = 6	к.ч. = 8	

Диоксиды Ti, Zr, Hf

Диоксид Ті

1. Получение *рутила* сульфатным методом

$$TiO_2 + H_2SO_4$$
 (конц) = $TiOSO_4 + H_2O$
 $TiOSO_4 + H_2O$ (пар) = $TiO_2 + H_2SO_4$
рутил

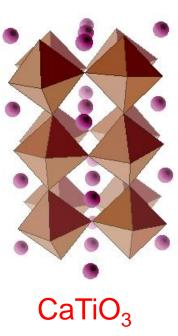

2. Получение анатаза хлоридным методом

$$TiO_2 + 2C + 2CI_2 = TiCI_4 + 2CO$$

 $TiCI_4 + O_2 = TiO_2 + 2CI_2$ (1300 °C)

анатаз

3. Производство TiO_2 :


~ 6,5 млн тонн ежегодно в виде рутила, анатаза и наноматериалов

Нанотрубки ТіО2

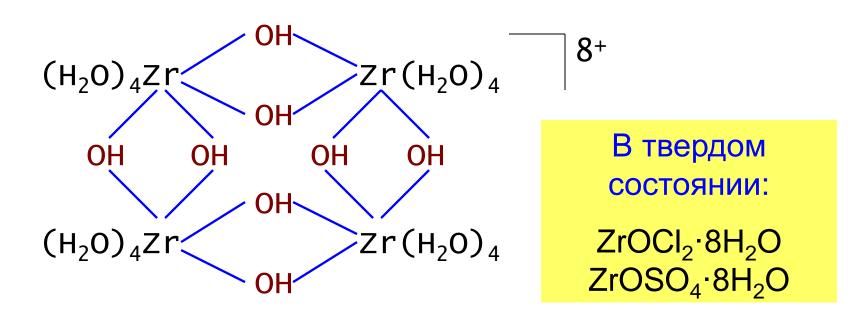
1. Оксиды химически инертны

$$CaO + TiO_2 = CaTiO_3$$
 (1200 °C) перовскит $K_2CO_3 + TiO_2 = K_2TiO_3$ (900 °C) $2K_2S_2O_7 + TiO_2 = Ti(SO_4)_2 + 2K_2SO_4$ (600 °C) аналогично для Zr , Hf

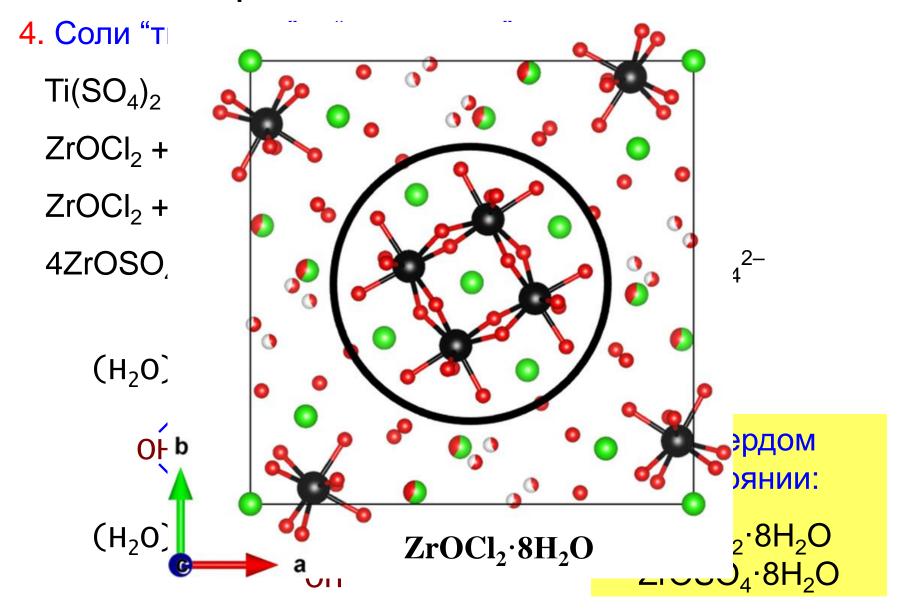
3

перовскит

2. Титановая кислота


$$H_2[TiCl_6] + 6KOH = TiO_2 \cdot 2H_2O + 6KCI + 2H_2O$$

 $TiO_2 \cdot xH_2O; x = 1, 2, ..., 8$ титановая кислота


3. Две формы существования титановой кислоты

$$α$$
-TiO $_2$ ·2H $_2$ O + H $_2$ SO $_4$ = TiOSO $_4$ + 3H $_2$ O $α$ -TiO $_2$ ·2H $_2$ O + 2KOH = K $_2$ [Ti(OH) $_6$] (100 °C) $β$ -TiO $_2$ ·H $_2$ O + H $_2$ SO $_4$ ≠ $β$ -TiO $_2$ ·H $_2$ O + KOH ≠ $α$ -TiO $_2$ ·2H $_2$ O = $β$ -TiO $_2$ ·2H $_2$ O (τ) «старение» $β$ -TiO $_2$ ·H $_2$ O = TiO $_2$ + H $_2$ O (t°)

4. Соли "титанила" и "цирконила"

Ti(SO₄)₂ + H₂O
$$\xrightarrow{\text{H}_2\text{SO}_4}$$
 TiOSO₄ + H₂SO₄
ZrOCl₂ + H₂SO₄ = ZrOSO₄ + 2HCl
ZrOCl₂ + 2H₃PO₄ = Zr(HPO₄)₂ + 2HCl + H₂O
4ZrOSO₄ + 20H₂O \Leftrightarrow [Zr₄(OH)₈(H₂O)₁₆]⁸⁺ + 4SO₄²⁻

5. Пероксиды Ті

В кислой среде:

$$TiOSO_4 + H_2SO_4 + H_2O_2 = H_2[Ti(O_2)(SO_4)_2] + H_2O$$

$$H_2TiCl_6 + H_2O_2 = H_2[Ti(O_2)Cl_4] + 2HCl$$

В щелочной среде:

$$H_2[Ti(O)_2(SO_4)_2] + 8KOH + 3H_2O_2 = K_4[Ti(O_2)_4] + 8H_2O + 2K_2SO_4$$

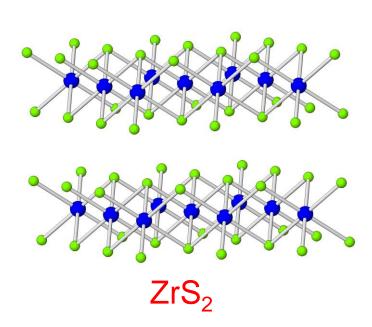
 $TiO_2 \cdot H_2O$

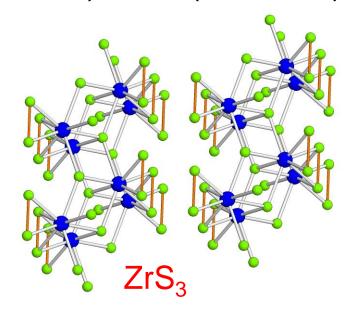
 $ZrO_2 \cdot H_2O$

 $HfO_2 \cdot H_2O$

Увеличение радиуса металла

Усиление основных свойств


Уменьшение способности к восстановлению


Халькогениды Ti, Zr, Hf

1. Известны все халькогениды МҮ2

(M = Ti, Zr, Hf; Y = S, Se, Te): структура типа Cdl_2

- 2. MY₂ металлические проводники
- 3. $TiS_2 + 4H_2O = TiO_2 + 2H_2S$ (T ~100 °C)
- 4. Известны MS₃ (полупроводники) и MS (металлы).



Комплексы Ti(IV), Zr(IV), Hf(IV)

- 1. Ті не образует устойчивых комплексов в с.о. 4, ЭСКП = 0
- 2. Комплексы Zr(IV), Hf(IV) устойчивы, если донорный атом O, F

$$ZrOCl_2 + 2H_3PO_4 = H_2[Zr(PO_4)_2] + 2HCl + H_2O$$

 $\kappa.4. = 6$

$$ZrOCl_2 + 2HF + 5KF = K_3[ZrF_7] + 2KCl + H_2O$$

 $\kappa.4. = 7$

3. Наиболее устойчивы комплексы Zr(IV), Hf(IV) с хелатирующими лигандами

$$ZrOCl_2 + 4SrC_2O_4 + H_2O = Sr_2[Zr(C_2O_4)_4] + SrCl_2 + Sr(OH)_2$$

 $\kappa. 4. = 8$

Соединения Ti(III)

1. Получение в растворе восстановлением Ti(IV)

$$2H_2TiCl_6 + Zn = 2TiCl_3 + ZnCl_2 + 4HCl$$

 $2TiOSO_4 + 2H_2SO_4 + Zn = Ti_2(SO_4)_3 + ZnSO_4 + 2H_2O$

2. Получение в твердой фазе восстановлением Ti(IV)

$$2TiO_2 + H_2 \xrightarrow{1100 \text{ °C}} Ti_2O_3 + H_2O$$
 структура корунда

2TiCl₄ + H₂ ^{400 °}С 2TiCl₃ + 2HCl сопропорционированием

 $3\text{Til}_4 + \text{Ti} \xrightarrow{400 \, ^\circ\text{C}} 4\text{Til}_3$

Соединения Ti(III)

4. Комплексы Ti(III)

Почти всегда октаэдрические: $[TiF_6]^{3-}$, $[TiCl_6]^{3-}$, $[Ti(CN)_6]^{3-}$, $[Ti(H_2O)_6]^{3+}$ t_{2g}^{-1} ЭСКП = $2/5\Delta_O$

 $\begin{array}{c|c}
\hline
& -- & e_g \\
& +-- & t_{2g} \\
& d^1
\end{array}$

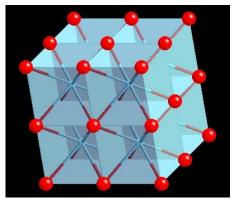
типичная окраска: синяя, фиолетовая

$$Ti_2(SO_4)_3 + 6H_2O \Leftrightarrow 2[Ti(H_2O)_6]^{3+} + 3SO_4^{2-}$$

5. Окисление Ti(III)

$$5\text{Ti}_2(SO_4)_3 + 2\text{KMnO}_4 + 2\text{H}_2\text{O} = 10\text{TiOSO}_4 + \text{K}_2\text{SO}_4 + 2\text{H}_2\text{SO}_4 + 2\text{H}_2\text{SO}_4$$

$$E^{0}(TiO^{2+}/Ti^{3+}) = +0.1 B$$

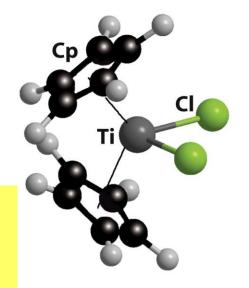

$$4\text{TiCl}_3 + 12\text{KOH} + O_2 = 4\text{TiO}_2 \cdot 2\text{H}_2\text{O} + 12\text{KCI}$$

Соединения Ti(II)

1. Получение Ti(II)

$$2\text{TiCl}_3 + \text{H}_2 \xrightarrow{850 \text{ °C}} \text{TiCl}_2 + 2\text{HCl}$$

$$TiO_2 + Ti \xrightarrow{1000 \text{ °C}} 2TiO$$



TiO

2. Окисление

$$2\text{TiCl}_2 + 2\text{HCI (p-p)} = 2\text{TiCl}_3 + \text{H}_2$$

 $\text{TiCl}_2 + 2\text{cp} = [\text{TiCl}_2(\text{cp})_2] \quad (\text{Ti}^{2+} \rightarrow \text{Ti}^{4+})$

$$TiO^{2+} \xrightarrow{+0.10} Ti^{3+} \xrightarrow{-0.37} Ti^{2+} \xrightarrow{-1.63} Ti^{0}$$

Сравнение Ti—Si

Τi

4 валентных е⁻: 3d²4s²

тугоплавок

растворим в конц. кислотах

растворим в щелочах (to)

основная с.о. = 4

TіСІ₄ гигроскопичен, мономер

 $TiO_2 \cdot xH_2O$ не растворим в воде

устойчивы комплексы $[TiX_6]^{2-}$

легко восстановить до Ti³⁺

нет отрицательных с.о.

Si

4 валентных e⁻: 4s²4p²

тугоплавок

растворим в окислителях

растворим в щелочах (to)

основная с.о. = 4

SiCl₄ гигроскопичен, мономер

SiO₂·xH₂O не растворим в воде

устойчивы комплексы $[SiX_6]^{2-}$

Si³⁺ не образуется

образует силициды

Тенденции в 4 группе

- 1. Свойства Ті отличаются от свойств Zr, Hf, которые похожи
- 2. Вниз по группе уменьшается летучесть тетрагалогенидов, увеличивается тугоплавкость оксидов
- 3. $TiO_2 \cdot xH_2O$ амфотерен, $ZrO_2 \cdot xH_2O$, $HfO_2 \cdot xH_2O$ проявляют основные свойства
- 4. Наиболее устойчива с.о. 4, устойчивость низших с.о. уменьшается вниз по группе и стабилизируется связями М–М
- 5. Наиболее устойчивы комплексы с донорными атомами О, F, вниз по группе увеличиваются характерные к.ч. от 6 до 9