Строение и свойства комплексных соединений

Строение комплексов *d*-металлов

- 1. Не определяется правилами Гиллеспи
- 2. В первом приближении основано на донорно-акцепторном взаимодействии металл—лиганд
- 3. Учитывает степень окисления и электронную конфигурацию центрального атома, включая особенности распределения *d*-электронов

Строение комплексов *d*-металлов

Три подхода к описанию строения комплексов d-металлов

- 1. Метод валентных связей (МВС)
- 2. Теория кристаллического поля (ТКП)
- 3. Метод молекулярных орбиталей (ММО)

Донорно-акцепторное взаимодействие между

- центральным атомом (акцептор)
- лигандами (доноры)
- 1) Все связи 2с-2е-
- 2) Принимается гибридизация орбиталей d-металла

$$Cr^{3+}$$
 (d^3) :OH₂ (x6)
[$Cr(H_2O)_6$]³⁺ $\xrightarrow{\uparrow}$ $\xrightarrow{\downarrow}$ $\xrightarrow{\times}$ $\xrightarrow{\times}$ $\xrightarrow{\times}$ $\xrightarrow{\times}$ $\xrightarrow{\times}$ $\xrightarrow{\times}$ $\xrightarrow{\times}$ $\xrightarrow{\times}$ $\xrightarrow{\times}$ $\xrightarrow{\to}$ $\xrightarrow{\downarrow}$ ОКТАЭДР
[$Ni(CN)_4$]²⁻ $\xrightarrow{\downarrow}$ $\xrightarrow{\uparrow}$ $\xrightarrow{\uparrow}$ $\xrightarrow{\uparrow}$ $\xrightarrow{\downarrow}$ $\xrightarrow{\times}$ $\xrightarrow{\times}$

По уровню участвующих в гибридизации орбиталей различают комплексы внешнеорбитальные и внутриорбитальные

Внутриорбитальный = низкоспиновый = ковалентный

Внешнеорбитальный = высокоспиновый = ионный

<u>Но</u>: слишком велико различие в энергии 3d и 4d орбиталей!

Внутриорбитальный = низкоспиновый = ковалентный

Внешнеорбитальный = высокоспиновый = ионный

Но: внешние d-орбитали лежат слишком высоко по энергии!

$$Ni^{2+}$$
 (d^8) $:CI^-$ ($x4$)

[NiCI₄]²⁻ $\xrightarrow{4+}$ $\xrightarrow{4+}$ $\xrightarrow{4+}$ $\xrightarrow{x\times}$ $\xrightarrow{x\to}$ $\xrightarrow{x$

Комплексы внутриорбитальные, одинаковая электронность

Почему различна гибридизация?

Разная гибридизация, разная электронность

Одинаковая геометрия

Гибридизация в МВС

К.Ч.	Гибридизация	Геометрия	Примеры
2	sp <i>или</i> ds	Гантель	$[Ag(NH_3)_2]^{1+}$
3	sp² <i>или</i> d²s	Треугольник	[HgCl ₃] ¹⁻
4	sp ³ <i>или</i> d ³ s	Тетраэдр	[VCl ₄] ¹⁻ , [FeCl ₄] ¹⁻
4	dsp ²	Квадрат	[Ni(CN) ₄] ²⁻
5	sp ³ d <i>или</i> dsp ³	Тригональная бипирамида	[CuCl ₅] ³⁻
5	d ² sp ² или d ⁴ s	Квадратная пирамида	[Ni(CN) ₅] ³⁻
6	sp ³ d ² или d ² sp ³	Октаэдр	[Fe(H ₂ O) ₆] ³⁺ , [Cr(H ₂ O) ₆] ³⁺

Ограничения МВС

MBC – очень наглядный метод, объясняет геометрическое строение известных комплексов

<u>Ho</u>:

- 1. Не имеет предсказательной силы
- 2. Описывает магнитные свойства комплексов только в простейших случаях
- 3. Не объясняет окраску комплексов
- 4. Не объясняет причину различной устойчивости комплексов
- 5. Не имеет энергетических параметров

Общие положения ТКП

ТКП – теория кристаллического поля (Бете, 1929)

- 1. Рассматриваются соединения, состоящие из катиона переходного металла и лигандов, связанных электростатическим взаимодействием
- 2. Лиганды рассматриваются как точечные заряды, являющиеся источником электростатического поля
- 3. Взаимодействие центрального атома с лигандами рассматривается с учетом всех особенностей *d*-орбиталей центрального атома и распределения электронов на них

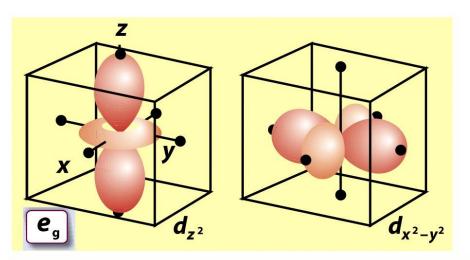
Общие положения ТКП

ТКП – теория кристаллического поля (Бете, 1929)

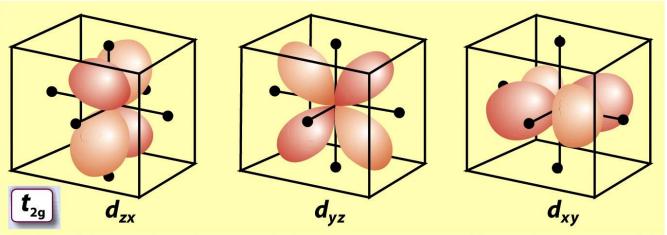
 Рассматрив катиона пер связанных з

2. Лиганды рас являющиеся поля

3. Взаимодей олигандами особенност распредели


состоящие из лигандов, взаимодействием очечные заряды, остатического

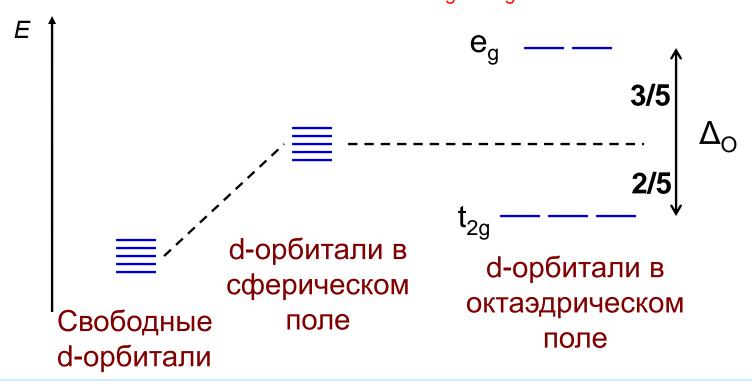
Ханс А́льбрехт Бе́те


1906-2005

атома с етом всех рального атома и

Октаэдрическое поле

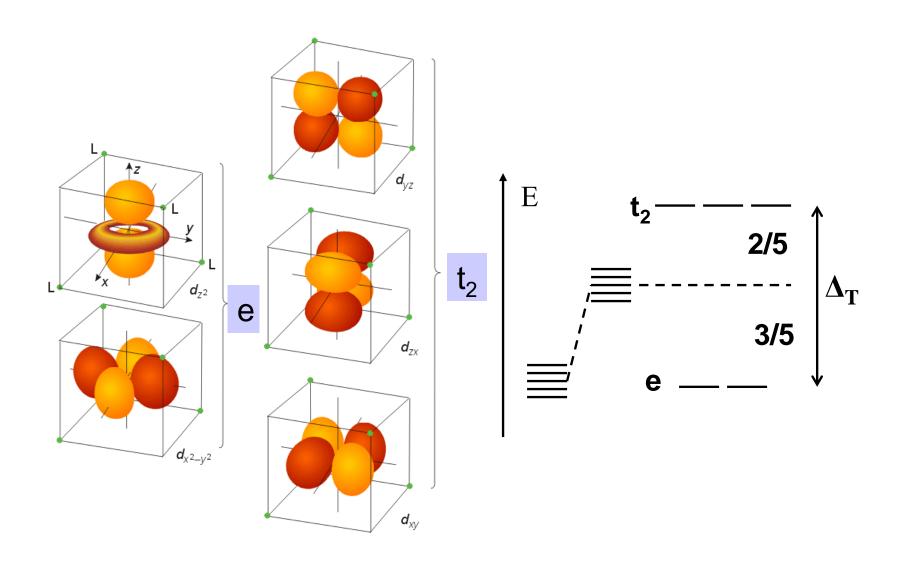
Орбитали направлены к лигандам



Орбитали <u>не</u> направлены к лигандам

Figure 19-1
Shriver & Atkins Inorganic Chemistry, Fourth Edition
© 2006 by D. F. Shriver, P. W. Atkins, T. L. Overton, J. P. Rourke, M. T. Weller, and F. A. Armstrong

Октаэдрическое поле


В свободном состоянии и в сферическом поле все d-орбитали вырождены, в октаэдрическом поле они расщеплены на два набора вырожденных орбиталей – t_{2q} и e_q

Суммарная энергия орбиталей при расщеплении не меняется

$$E(e_q) - E(t_{2q}) = \Delta_o$$
 \leftarrow энергия расщепления

Тетраэдрическое поле

Сильное и слабое поле

- 1. Стремление к максимальному спину
- 2. Стремление к минимуму орбитальной энергии

ЭСКП

ЭСКП

энергия стабилизации кристаллическим полем

В октаэдре: ЭСКП = $[2/5 n(t_{2g}) - 3/5 n(e_g)]\Delta_O - P$

<u>Энергия:</u> Дж/моль, эВ, К, см⁻¹, ...

△ – энергия расщепления октаэдрическим полем

Р – энергия спаривания электронов

ЭСКП

$$\Delta_{\rm O}$$
 > P сильное поле

$$\Delta_{\rm O}$$
 > P сильное поле $\Delta_{\rm O}$ < P слабое поле

Для конфигурации d⁴ в октаэдрическом поле:

В тетраэдре: ЭСКП = $[3/5 \text{ n(e)} - 2/5 \text{ n(t_2)}]\Delta_T - P$

Величины ЭСКП в октаэдре

Спектрохимический ряд лигандов

$\Delta_{\rm O}$ зависит от:

природы и заряда центрального атома, природы и числа

лигандов: спектрохимический ряд!

 $\Delta_{\rm T} = 4/9\Delta_{\rm O}$

Р зависит от:

природы и заряда центрального атома

$$I^- < Br^- < S^{2-} < SCN^- < CI^- < NO_3^- < N_3^- < F^- < OH^- < C_2O_4^{2-} < H_2O < NCS^- < CH_3CN < NH_3 < en < NO_2^- < CN^- < CO$$

Левее H_2O — лиганды слабого поля Правее H_2O — лиганды сильного поля

для 3d металлов

 $[MnF_6]^{3-}$ (d^4) высокоспиновый комплекс $(t_{2g})^3(e_g)^1$

 $[Mn(CN)_6]^{3-}$ (d⁴) низкоспиновый комплекс $(t_{2g})^4$

Энергия предпочтения

 $[Cu(NH_3)_6][NiCl_4]$ или $[Ni(NH_3)_6][CuCl_4]$?

$$[Cu(NH_3)_6]^{2+}$$
 $Cu^{2+} d^9$

$$\Im CK\Pi = 3/5 \Delta_{O}$$

$$[NiCl_4]^{2-}$$
 Ni^{2+} d⁸

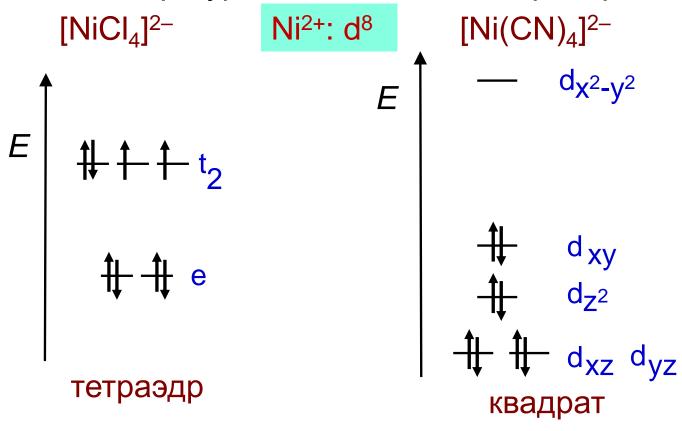
$$ΘCKΠ = 4/5 ΔT$$

$$[Ni(NH_3)_6]^{2+}$$
 Ni^{2+} d⁸

$$\Theta = 6/5 \Delta_{O}$$

$$[CuCl_4]^{2-}$$
 $Cu^{2+} d^9$

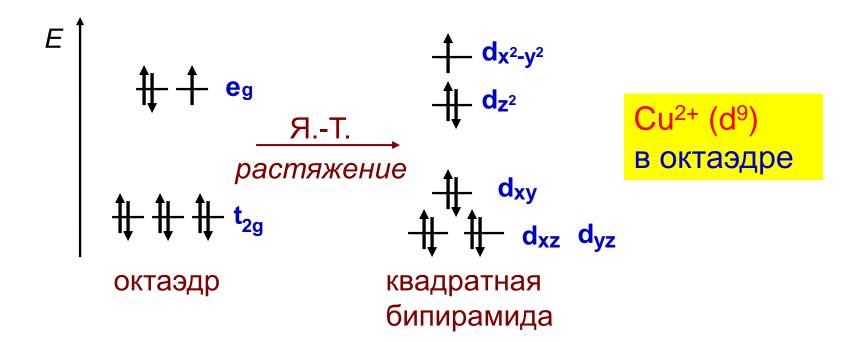
$$\Im CK\Pi = 2/5 \Delta_T$$


$$\Delta E(Cu^{2+}) = 3/5 \Delta_O - 2/5 \Delta_T =$$
 $(3/5 - 2/5 \cdot 4/9) \Delta_O = 19/45 \Delta_O$

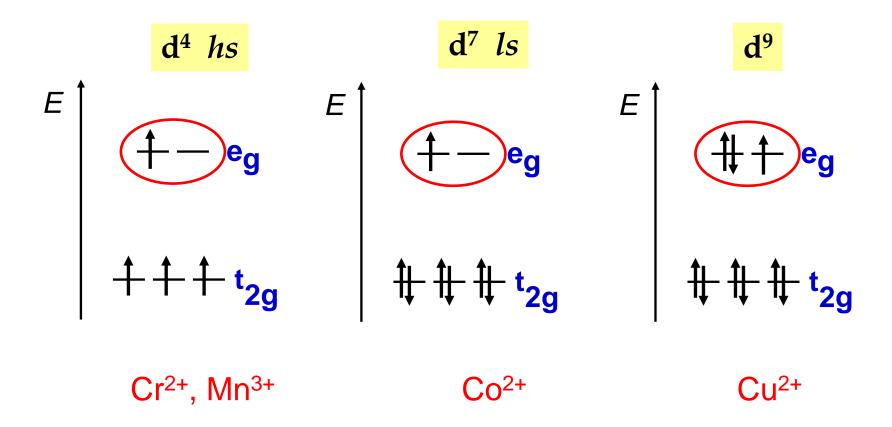
$$\Delta E(Ni^{2+}) = 6/5 \Delta_O - 4/5 \Delta_T =$$

$$(6/5 - 4/5 \cdot 4/9) \Delta_O = 38/45 \Delta_O$$

Тетраэдр и квадрат


Две основные конфигурации для к.ч.=4: тетраэдр и квадрат

Только с лигандами слабого поля, высокоспиновый


Обычно с лигандами сильного поля, низкоспиновый

Любая нелинейная молекулярная система в вырожденном электронном состоянии будет искажаться с понижением симметрии, приводящим к снятию вырождения и понижению энергии системы

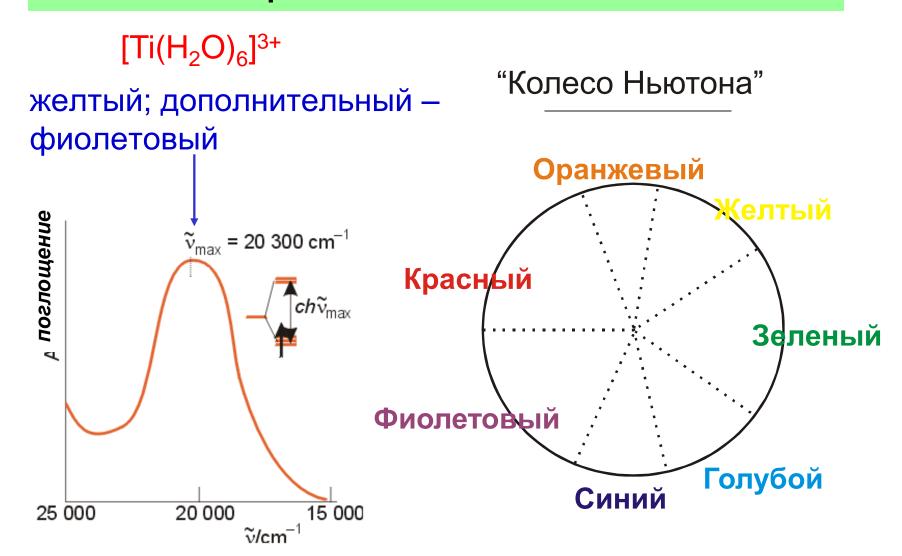
Эффект Я.-Т. выражен сильно, если вырождение снимается на е_д уровне октаэдрического комплекса

Магнитные свойства

$$\mu_{\text{эфф}} = 2 [S(S+1)]^{1/2} = [n(n+2)]^{1/2}$$
 (магнетон Бора)

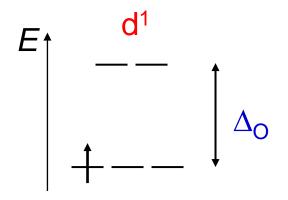
S – суммарный спин

n – число неспаренных электронов


$$[Ti(H_2O)_6]CI_3 Ti^{3+} d^1 \qquad \mu_{9\phi\phi} = 1.73 \text{ mB} \qquad \mu_{9\kappa c\pi} = 1.70 \text{ mB}$$

$$K_3[MnF_6]$$
 Mn^{3+} d^4 $\mu_{9\phi\phi} = 4.90 \text{ mB}$ $\mu_{9\kappa c\pi} = 4.95 \text{ mB}$

$$\label{eq:K4Fe} \mathsf{K}_{4}[\mathsf{Fe}(\mathsf{CN})_{6}] \quad \mathsf{Fe}^{2+} \quad \mathsf{d}^{6} \qquad \mu_{\mathsf{9}\mathsf{d}\mathsf{d}} = 0 \; \mathsf{mB} \qquad \qquad \mu_{\mathsf{9}\mathsf{KC\Pi}} = 0 \; \mathsf{mB}$$


$$[Ru(H_2O)_6]CI_3 Ru^{3+} d^5$$
 $\mu_{3KC\Pi} = 1.98 \text{ mB} => S = \frac{1}{2} (t_{2g}^5 e_g^0)$

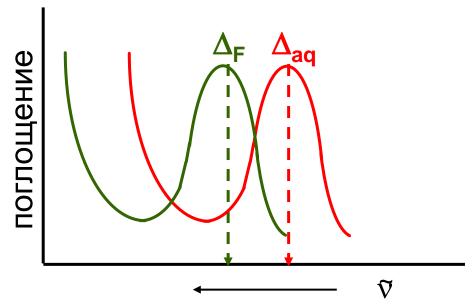
Окраска комплексов

$$E = ch \mathfrak{V}_{max} N_A (\kappa Дж/моль)$$

Окраска комплексов

$$\approx 243$$
 кДж/моль для Ti^{3+} в $[Ti(H_2O)_6]^{3+}$

Зависит от природы лиганда!


$$\Delta_{O} = E = h \cdot c \cdot \tilde{v} \cdot N_{A} = 11.96 \, \tilde{v} \, \text{Дж/моль}$$

h – постоянная Планка = 6.626·10⁻³⁴ Дж/с

с – скорость света = 2.998·10¹0 см/с

 N_A — число Авогадро = 6.022 10²³ моль⁻¹

 \overline{v} - волновое число в см⁻¹

Особенности ТКП

Метод ТКП прост и <u>объясняет и предсказывает</u>:

- 1) Геометрическое строение комплексов
- 2) Электронное строение комплексов
- 3) Магнитные свойства комплексов
- 4) Окраску комплексов

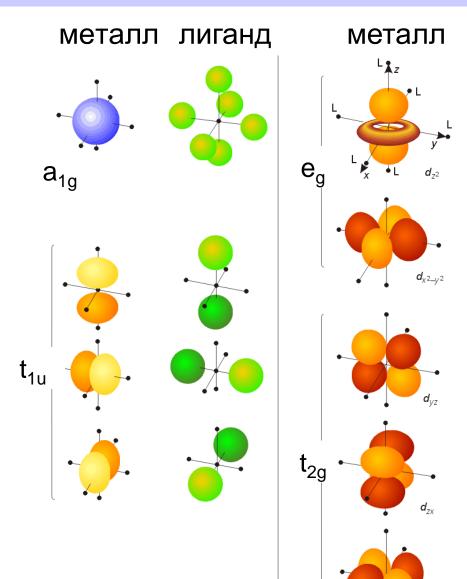
ТКП не рассматривает особенности строения лигандов ⇒ <u>Не объясняет и не предсказывает:</u>

- 1) Положение лигандов в спектрохимическом ряду
- 2) Образование π-связи M–L
- 3) Образование простых и кратных связей М-М

ММО для комплексов

Метод МО:

- 1) Универсален (описывает все свойства комплексов)
- 2) Сложен (требует знание квантовой механики и теории групп)
- 3) Учитывает ковалентное взаимодействие


1-е приближение ММО для комплексов:

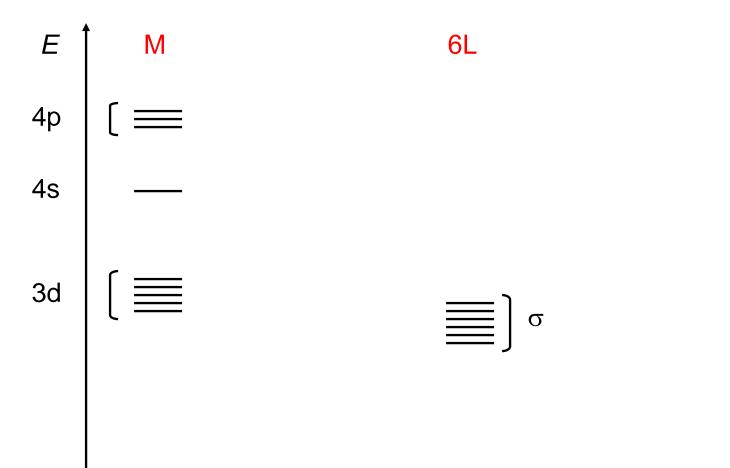
- 1) Принимается во внимание только σ-связь M–L
- 2) Все связи считаются донорно-акцепторными
- 3) Учитываются только валентные орбитали

Орбитальное взаимодействие

В октаэдрическом комплексе с 6 одинаковыми лигандами

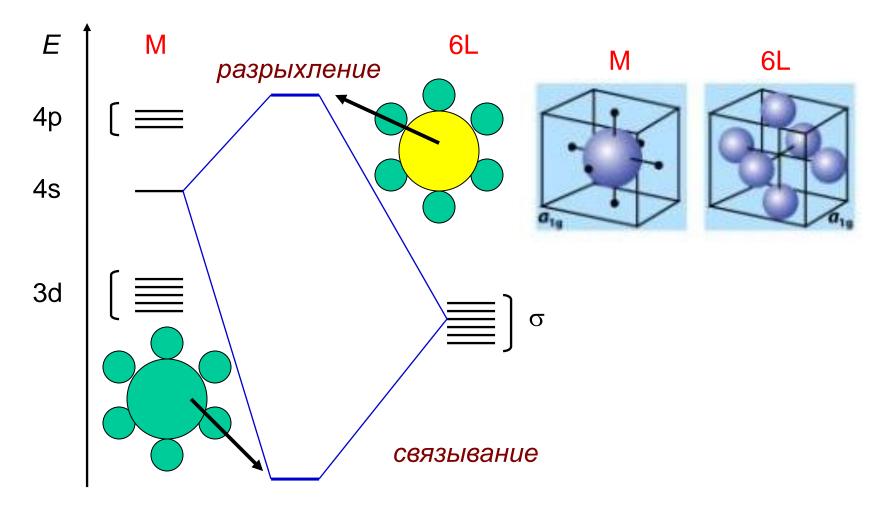
Приближение только σ-связи

лиганд

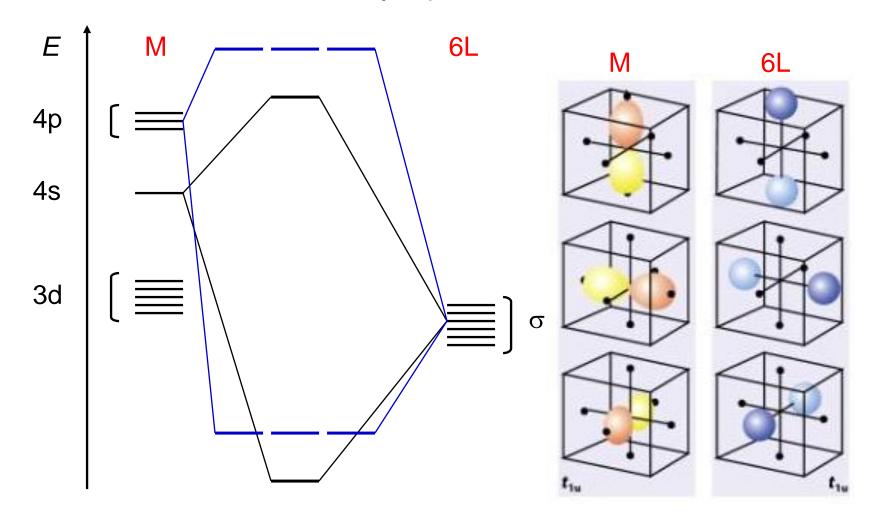

Построение схемы МО в октаэдре

Общие принципы:

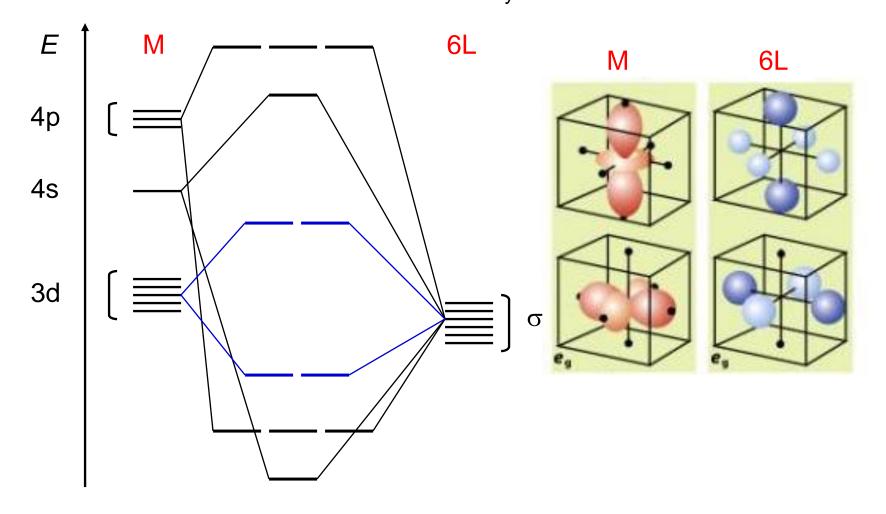
- 1. Центральный атом предоставляет 9 орбиталей 5(n–1)d, 1ns, 3np (по возрастанию энергии); для 3-d металлов: 5(3d)+1(4s)+3(4p)
- 2. Шесть лигандов предоставляют по одной орбитали σ-симметрии каждый
- 3. Орбитали лигандов рассматриваются не независимо, а в совокупности (подход групповых орбиталей)
- 4. Число молекулярный орбиталей равно сумме атомных орбиталей (правило МО-ЛКАО)
- Взаимодействие орбиталей может быть конструктивным (связывающее), деструктивным (разрыхляющее) и безразличным (несвязывающее).

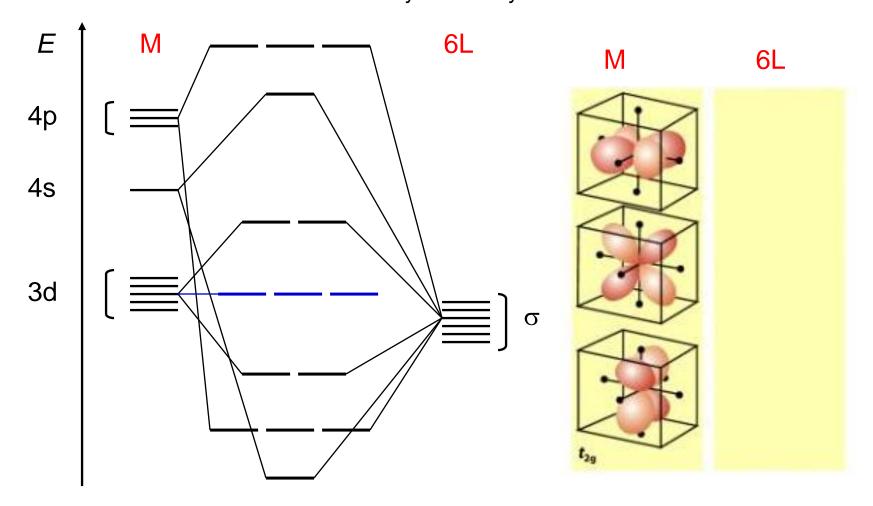

Построение схемы МО в октаэдре

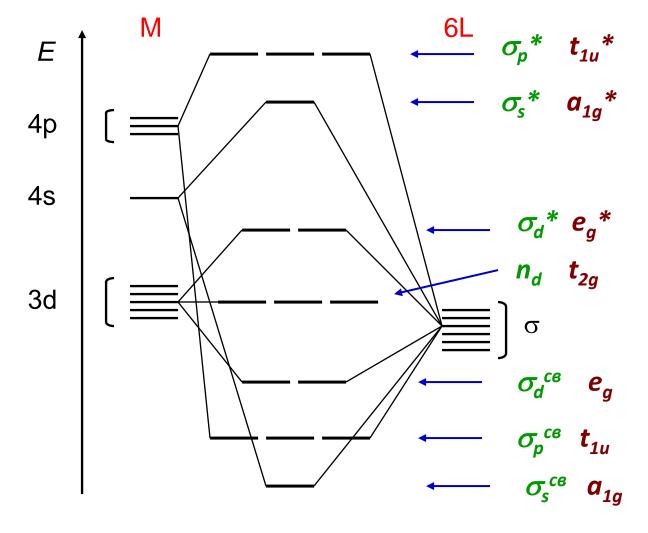
Шаг 1: относительное расположение орбиталей



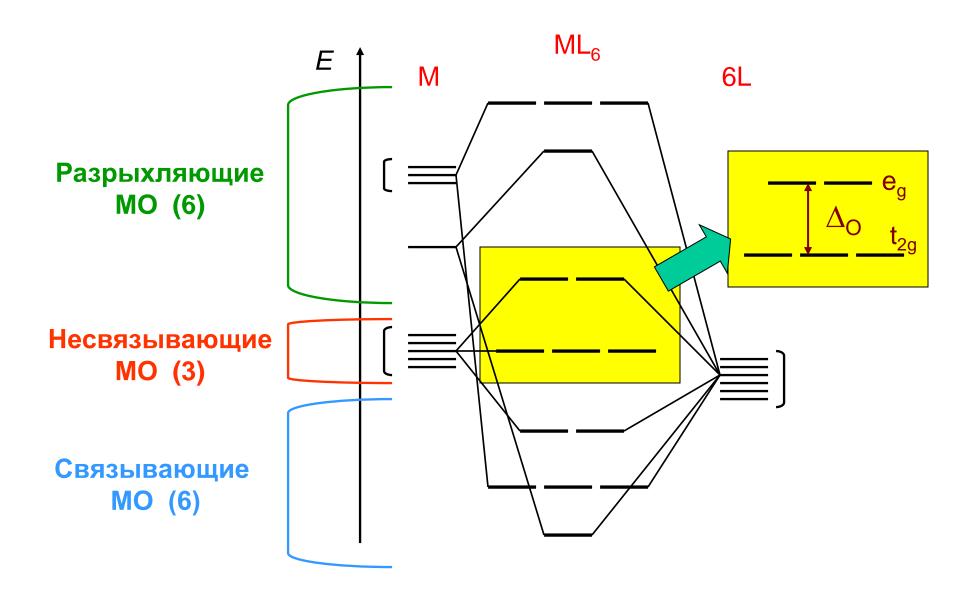
Построение схемы МО в октаэдре

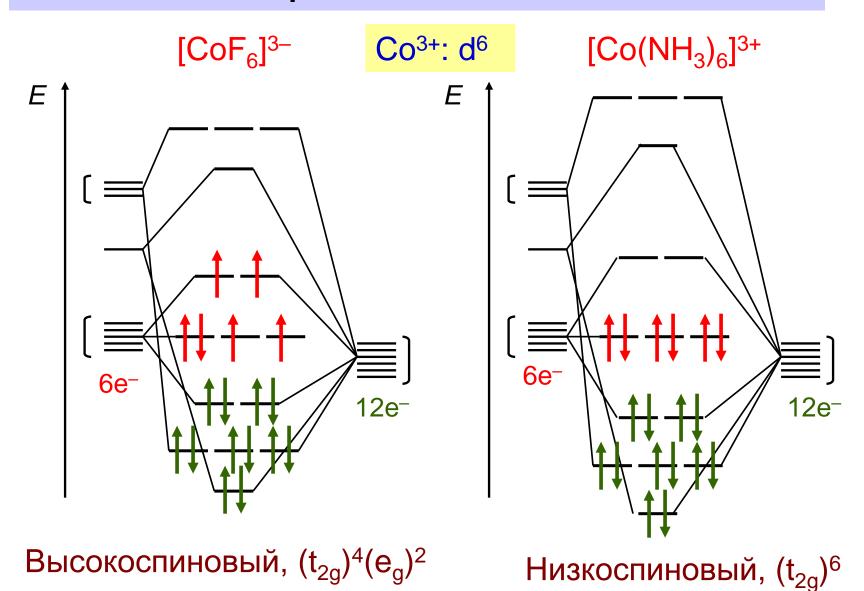

Шаг 2: взаимодействие s-орбитали ц.а.


Шаг 3: взаимодействие р-орбиталей ц.а.


Шаг 4: взаимодействие d_{z^2} и $d_{x^2-v^2}$ орбиталей ц.а.

Шаг 5: взаимодействие d_{xy} , d_{xz} , d_{yz} орбиталей ц.а.


Шаг 6: обозначение МО


Тип взаимодействия

Зимметрия орбиталей

Анализ схемы МО

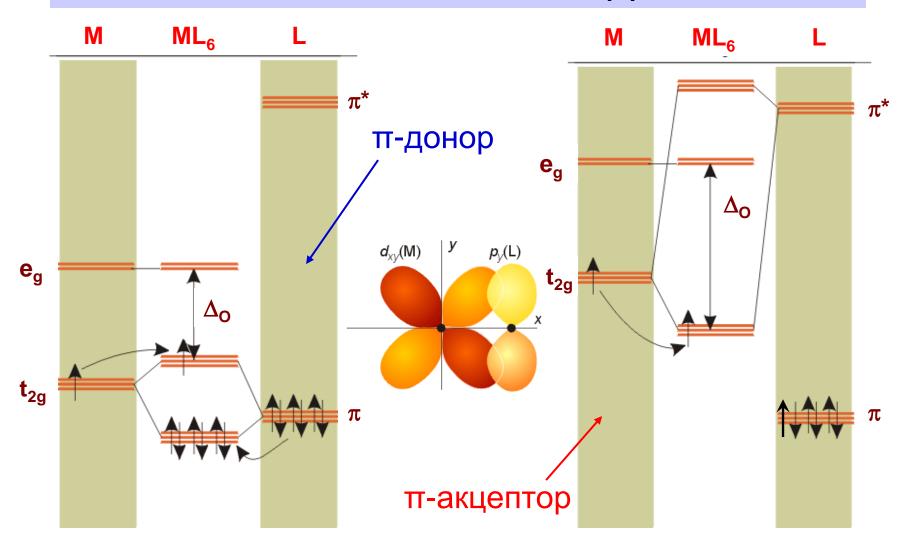
Электроны в схеме МО

Влияние природы лигандов

- 1. В зависимости от природы лигандов меняется энергия их σ-орбиталей
- 2. Различается степень перекрывания орбиталей
- 3. Принимается во внимание π-взаимодействие

Увеличение электроотрицательности лиганда

– уменьшение орбитальной энергии



Увеличение ковалентного взаимодействия – увеличение перекрывания орбиталей

2е приближение MO: учет π-перекрывания M—L

Влияние т-лигандов

МО в октаэдре с учетом т-связи

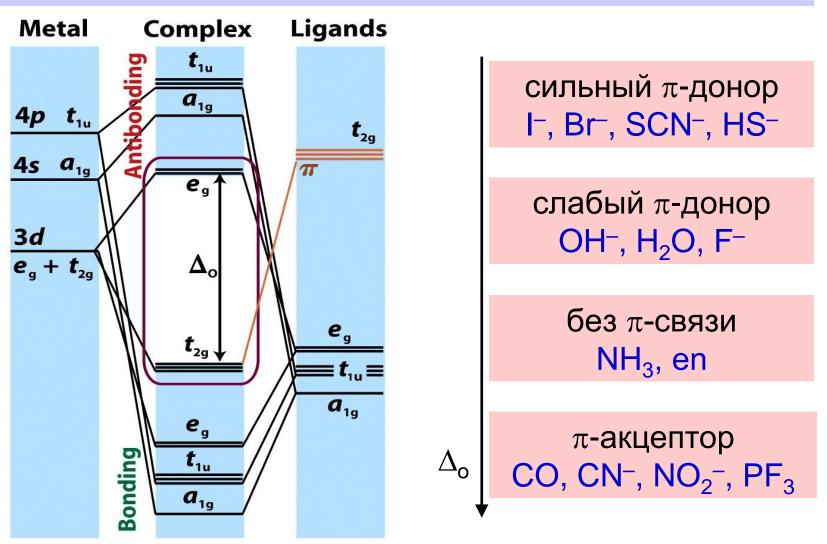
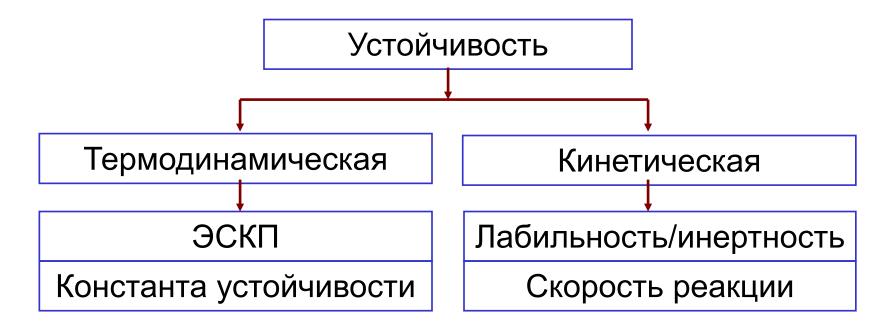


Figure 21-1


Shriver & Atkins Inorganic Chemistry, Fourth Edition

© 2006 by D. F. Shriver, P. W. Atkins, T. L. Overton, J. P. Rourke, M. T. Weller, and F. A. Armstrong

Образование и устойчивость

- Какие комплексы легко образуются?
- Почему комплексы одинакового состава и структуры имеют различную стабильность?
- Какие комплексы термодинамически устойчивы?
- Какие факторы определяют термодинамическую устойчивость комплексов?
- Чем отличается термодинамическая устойчивость от кинетической?
- Как выражают термодинамическую и кинетическую устойчивость?

Устойчивость комплексов

- 1. Чем больше ЭСКП, тем выше <u>термодинамическая</u> устойчивость комплекса
- 2. Наиболее <u>термодинамически</u> прочные комплексы образуются с лигандами с π-вкладом в связь М—L

Жесткие и Мягкие Кислоты и Основания (ЖМКО)

По Льюису: катионы – кислоты, лиганды – основания

Для катионов класса «а»

Для катионов класса «b»

$$I^- > Br^- > CI^- > F^-$$

Катионы класса «а» называются жесткими

Преимущественно ионное взаимодействие

Катионы класса «b» называются мягкими

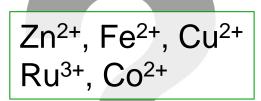
Преимущественно ковалентное взаимодействие

Жесткие катионы

- 1. s^0 , s^2p^6 катионы
- 2. f-катионы
- высокозарядные dкатионы
- 4. малые s² катионы

Мягкие катионы

- 1. низкозарядные dкатионы
- 2. большие s^2 катионы

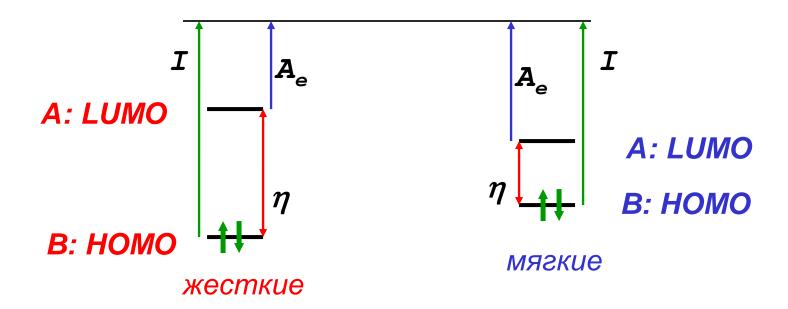

Примеры (d):

Mn²⁺

Cr³⁺, Fe³⁺, Co³⁺, La³⁺

Ce⁴⁺, Zr⁴⁺

Nb⁵⁺, Mo⁵⁺



Примеры (d):

Cu¹⁺, Ag¹⁺, Cd²⁺, Hg²⁺, Pt²⁺, Rh³⁺, Ir³⁺, Au³⁺, Pt⁴⁺

1	2			13	14	15	16	17	18
Н								(H)	Не
Li	Be			В	C	N	O	F	Ne
Na	Mg			Al	Si	P	S	Cl	Ar
K	Ca			Ga	Ge	As	Se	Br	Kr
Rb	Sr	d-block		In	Sn	Sb	Te	I	Xe
Cs	Ba			Tl	Pb	Bi	Po	At	Rn
Fr	Ra								

Жесткость анионов увеличивается с уменьшением радиуса и увеличением электроотрицательности

I – потенциал ионизации

 A_e — сродство к электрону

 η – относительная жесткость

Константа устойчивости

$$M + nL = ML_n,$$

 $\beta_n = \frac{a_{ML_n}}{a_M a_L^n},$
 $ML_n = M + nL.$

$$M + L = ML$$
; $ML + L = ML_2$

$$ML_2 + L \leftrightharpoons ML_3$$
; $ML_{n-1} + L \leftrightharpoons ML_n$.

 K_i – константа устойчивости по *i*-ой ступени

β - общая константа устойчивости комплекса

$$K_1 = \frac{a_{\text{ML}}}{a_{\text{M}} a_{\text{L}}}; \qquad K_2 = \frac{a_{\text{ML}_2}}{a_{\text{ML}} a_{\text{L}}}; \dots K_n = \frac{a_{\text{ML}_n}}{a_{\text{ML}_{n-1}} a_{\text{L}}} \qquad \beta_n = K_1 K_2 \dots K_n$$

Константа устойчивости

[MnF₆]⁴⁻
$$Ig\beta_6 = 15.50$$
 [Cd(NH₃)₄]²⁺ $Ig\beta_4 = 7.02$ [Ag(CN)₂]¹⁻ $Ig\beta_2 = 19.87$ [Cd(en)₂]²⁺ $Ig\beta_2 = 10.30$ [Fe(CN)₆]⁴⁻ $Ig\beta_6 = 35.00$ [Ni(NH₃)₆]²⁺ $Ig\beta_6 = 8.01$ [Fe(CN)₆]³⁻ $Ig\beta_6 = 42.00$ [Ni(en)₃]²⁺ $Ig\beta_3 = 17.57$

Связь с ЭСКП следует из: $\Delta G^0 = \Delta H^0 - T\Delta S^0 = -RT \ln{(\beta_n)},$

Red/Ox реакции КС

Электродный потенциал Red/Ox реакции зависит от природы и числа лигандов в комплексе

$$E^{0}(Fe^{3+}/Fe^{2+}) = 0.77 \text{ B}$$
 [Fe(H₂O)₆]ⁿ⁺
 $E^{0}([Fe(CN)_{6}]^{3-}/[Fe(CN)_{6}]^{4-}) = 0.36 \text{ B}$
 $E^{0}([Fe(C_{2}O_{4})_{3}]^{3-}/[Fe(C_{2}O_{4})_{3}]^{4-}) = 0.02 \text{ B}$

$$E^{0}(Co^{3+}/Co^{2+}) = 1.80 B$$
 [Co(H₂O)₆]ⁿ⁺
 $E^{0}([Co(NH_{3})_{6}]^{3+}/[Co(NH_{3})_{6}]^{2+}) = 0.11 B$

Red/Ox реакции КС

Протекание red/ох реакций может обеспечиваться комплексообразованием

$$CoCl_2 + O_2 + NH_4CI \neq$$
 $[Co(NH_3)_6]Cl_2 + 1/4O_2 + NH_4CI = [Co(NH_3)_6]Cl_3 + NH_3 + 1/2H_2O$ $t_{2g}^{\ 6}$: устойчив

$$FeCI_3 + KI = FeCI_2 + KCI + 1/2I_2$$

 $K_3[Fe(C_2O_4)_3] + KI ≠ хелатный комплекс: устойчив$

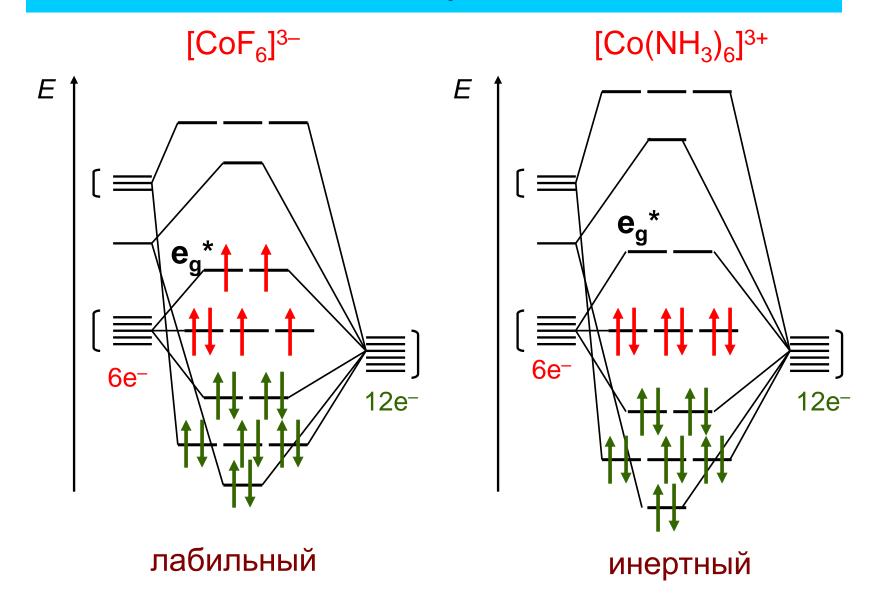
Мо +
$$HNO_3$$
 ≠ Mo + $2HNO_3$ + $8HF = H_2[MoF_8] + 2NO + $4H_2O$ устойчив по Пирсону$

Кинетическая устойчивость

Лабильность и инертность – параметры кинетической стабильности

Если время жизни комплекса в 0.1 М растворе при 298 К больше 1 мин, то он инертный, если меньше 1 мин, то он лабильный

 $[Fe(CN)_6]^{4-}$ $Ig\beta_6 = 35.00$ термодинамически устойчив, инертен


 $[Fe(CN)_6]^{3-}$ $Ig\beta_6 = 42.00$

термодинамически устойчив, лабилен

Кинетическая устойчивость

- 1. Комплексы с электронами на разрыхляющих орбиталях лабильны
- 2. Среди октаэдрических комплексов 3d металлов инертны только $t_{2a}^{\ \ 6}$ и $t_{2a}^{\ \ 3}$ комплексы
- 3. Комплексы 4d и 5d металлов, не имеющие электронов на разрыхляющих орбиталях, всегда инертны
- 4. Все тетраэдрические комплексы лабильны, квадратные инертны
- 5. Чем меньше ЭСКП, тем меньше время жизни лабильных комплексов

Кинетическая устойчивость

Транс-эффект

Транс-эффект: влияние лиганда на скорость замещения лиганда, находящегося в транс-положении

Ряд лабилизирующего влияния лигандов

$$CO \approx CN^{-} \approx C_{2}H_{4} > R_{2}S > NO_{2}^{-} > I^{-} > Br^{-} > CI^{-} > F^{-} > OH^{-} > RNH_{2} > NH_{3} > H_{2}O$$

Замещение только в *транс*-положении к C_2H_4 !

Транс-эффект

<u>Пример использования транс-эффекта</u>

1)
$$[Pt(NH_3)_4]^{2+} + 2HCI = trans - [PtCl_2(NH_3)_2] + 2H^+$$

2)
$$[PtCl_4]^{2-} + 2NH_3 = cis-[PtCl_2(NH_3)_2] + 2Cl^{-}$$

Цис-изомер