

исследования неорганических веществ и материалов Ю.Д.Третьяков А.В.Шевельков Е.А.Гудилин

Методы

Оптический Микроскот с термоскот ком Nikon Eelipse 600 Сканирующий Зондовый Микроскоп Интегра-Аура

Contra State Of

сионный

0 0%

//www.hsms.msu.ru/ckp.

BOCE

Vie

С

VI-IVII

Электрохимический анализатор Solartron

нализатор

OBEDXHOCT

000000

CL.II.

000000

Просвечивающий электронный

ULK TRAY DRYER

REEZONE'

OT JEM 2000

Типы методов исследований

Характеризация соединений – неотъемлемая часть всех исследований в неорганической химии

Различают (условно) методы исследования:

- химические: хим. анализ, реакционная способность
- физические: идентификация индивидуальных соединений и измерение их свойств
- 3. физико-химические:

получение диаграмм "состав-свойство" в системах соединений

Основная информация

- 1. Состав соединения
- 2. Идентификация соединения и фазовый анализ
- 3. Строение молекул
- 4. Кристаллическая структура соединений
- 5. Строение электронных оболочек и энергия электронов
- 6. Распределение зарядов в молекуле и кристалле
- 7. Особенности химической связи в молекуле и твердом теле
- 8. Динамика атомов и молекул в соединении
- 9. Термодинамические характеристики соединения
- 10. Реакционная способность соединений
- 11. Кинетика образования и распада соединений

Основные группы методов

Химический анализ

<u>Дифракционные методы</u> рентгенография, нейтронография, электронография

Спектральные методы

колебательная спектроскопия (ИК, КР), резонансная спектроскопия (ЯМР, ЯКР, ЭПР, ЯГР), электронная спектроскопия (УФ-вид., ФЭС, РЭС, Оже)

<u>Термические методы</u> термография (ДТА, ДТГ), калориметрия (ДСК)

Микроскопия

электронная микроскопия (ПЭМВС, АСМ, СЭМ), оптическая микроскопия

Электрофизические и магнитные методы резистивные измерения, магнетохимия

Комплексный подход

Субангстремный электронный микроскоп высокого разрешения FEI Titan

Интеркаляция в углеродные нанотрубки

10

Рентгеновский дифрактометр с высокотемпературной приставкой

(Rigaku, Япония, 2006 г.)

Дифракционные методы

наиболее важные методы при исследовании кристаллических твердых тел!

<u> Методы</u>:

1. дифракция рентгеновских лучей

ΡΦΑ, ΡϹΑ, ΡΓΑ

- 2. дифракция электронов
- 3. дифракция нейтронов

<u>Получаемая информация:</u>

- 1. фазовый состав смеси (продуктов реакции)
- 2. идентификация твердых тел
- 3. параметры элементарной ячейки
- 4. размер частиц и степень аморфизации
- 5. кристаллическая структура твердого тела

Рентгеновские «лучи»

✓ Рентгеновские лучи образуются при бомбардировке металлической мишени электронами высокой энергии

✓ Электроны высокой энергии выбивают электроны внутренних оболочек атомов

✓ На место выбитых электронов перемещаются электроны с более удаленных оболочек, испуская при переходе рентгеновские лучи

Длина волны рентгеновского излучения зависит от природы мишени

Дифракция

Рентгеновские лучи рассеиваются электронными оболочками атомов. Лучи, рассеяные разными атомами, интерферируют, складываясь или вычитаясь.

CsCl

ZnS

Закон Брэгга: 2d sin $\theta = n\lambda$

Идентификация

Фазовый анализ

Фазы с разным составом, но одинаковой структурой

Na

CI

Фазовый анализ

Фазы с одинаковым составом, но разными структурами

Индицирование

Формулировка закона Брэгга с учетом особенностей кристаллического строения:

 $2d_{hkl} \sin \theta = n\lambda$

h, k, I – индексы Миллера, определяющие, на сколько частей соответствующая их набору плоскость делит элементарную ячейку.

Для ортогональных ячеек: $1/d^2 = h^2/a^2 + k^2/b^2 + l^2/c^2$

(в частности для *кубической* ячейки 1/d² = h²/a²)

Для гексагональной ячейки: $1/d^2 = (4/3)([h^2 + k^2 + hk]/a^2) + l^2/c^2$

Процедура присвоения индексов Миллера каждому межплоскостному расстоянию для данного вещества называется <u>индицированием</u>. В результате процесса определяются параметры элементарной ячейки.

Как индицировать рентгенограмму?

Пример – рентгенограмма NaBr

Кубическая симметрия: 1/d² = h²/a²

d (Å)	$10^{4}/d^{2}$	$\mathbf{h}^2 + \mathbf{k}^2 + \mathbf{l}^2$	hkl	<i>a</i> (Å)
3.449	840.65	3	111	5.973843
2.987	1120.80	4	200	5.974000
2.112	2241.88	8	220	5.973638
1.801	3082.99	11	311	5.973241
1.725	3360.64	12	222	5.975575
1.493	4486.22	16	400	5.972000
1.370	5327.93	19	331	5.971692
1.336	5602.57	20	420	5.974774
1.219	6729.65	24	422	5.971856
1.149	7574.60	27	333	5.970379
1.055	8984.52	32	440	5.967981
1.009	9822.40	35	531	5.969325

a = 5.9723 ± 0.0005 Å

Включения и мозаичная структура. 39-44 – строение границ раздела около включений, 39 – 41 – граница (41) когерентного включения, 39 – матрица, 40 – атомные ряды включения, 42 – дислокации несоответствия для полукогерентного включения (43), 44 – граница раздела некогерентого включения, 45-46 – включения (46) как стопор развития микротрещин (45), 47 – объемная реконструкция областей спинодального распада (флуктуации состава), 48-50 доменное (мозаичное) строение зерен поликристаллического материала, 48 – поверхность зерна (высокоугловая граница), 49 – блоки мозаики (области когерентного рассеяния), 50 низкоугловые границы между блоками.

Уширение ренгеновских пиков

Fig. 2. XRD patterns (A) of assynthesized 4-nm Fe₅₂Pt₄₈ particle assemblies and a series of similar assemblies annealed under atmospheric N₂ gas for 30 min at temperatures of (B) 450°C, (C) 500°C, (D) 550°C, and (E) 600°C. The indexing is based on tabulated fct FePt reflections (25). The diffraction patterns were collected with a Siemens D-500 diffractometer with Cu K α radiation (wavelength λ = 1.54056 Å).

Наноионика

Уточнение структуры

Основные параметры кристаллической структуры:

- 1. Сингония и параметры элементарной ячейки
- 2. Координаты атомов, длины связей и величины валентных углов
- 3. Фактор недостоверности

Электронная плотность

Электронная плотность по данным рентгеновской дифракции

Карта электронной плотности NaCl

Особенности дифракции нейтронов

- 1. Нейтроны очень дороги требуются реакторы для их получения
- Используется для анализа кристаллических структур, содержащих легкие атомы – H, Li, B
- 3. Единственный метод для анализа магнитной структуры

Особенности электронной дифракции

- 1. Можно использовать для очень малого количества вещества
- 2. Используется для анализа особенностей кристаллической структуры на очень тонких образцах

Раман - спектрометр

<u>Что такое спектр?</u>

1) Система атомов устойчива в определенных состояниях, которым соответствуют значения энергии $E_0 < E_1 < E_2 < E_3 < ...$

2) Переход из состояния с Е_і в состояние с Е_ј связан с электромагнитным испусканием или поглощением, причем

- $\Delta E = E_i E_i = hv = hc/\lambda = hc \tilde{v} = kT$
- h постоянная Планка, 6.626 · 10⁻³⁴ Дж · с
- ∨ частота излучения (с⁻¹, Гц)
- с скорость света, 2.997 · 10⁸ м/с
- I длина волны излучения (м, см, нм)
- ⊽ волновое число (см⁻¹)
- k константа Больцмана, 1.381 · 10⁻²³ Дж/К
- Т абсолютная температура (К)

3) Набор дискретных переходов на разных частотах называется спектром

Шкала частот

Шкала

Шкала / спектр	гамма-лучи	Х-лучи	УФ о	бласть	видимый	ИК область	микро-	радиоволны
					свет		волны	
частота, Гц	10 ²⁰ -10 ¹⁸	10 ¹⁸ -10 ¹⁷	10 ¹⁷ -10 ¹⁵		10 ¹⁴	10 ¹³ -10 ¹²	10 ¹² -10 ⁹	10 ⁹ -10 ⁷
волновое	10 ¹⁰ -10 ⁸	10 ⁸ -10 ⁷	10 ⁷ -10 ⁵		10 ⁴	10 ³ -10 ²	10 ² -10 ⁻¹	10 ⁻¹ -10 ⁻³
число, см⁻¹								
длина волны,	10 ⁻¹⁰ -10 ⁻⁸	10 ⁻⁸ -10 ⁻⁷	10 ⁻⁷ –10 ⁻⁵		10-4	10 ⁻³ -10 ⁻²	10 ⁻² –10 ¹	10 ¹ -10 ³
СМ								
энергия, эВ	10 ⁷ -10 ⁵	10⁵–10³	10 ³ -10 ¹		1	10 ⁻¹ -10 ⁻²	10 ⁻² -10 ⁻⁵	10 ⁻⁸ -10 ⁻⁷
спектроскопия	ЯГР	РФЭС		У	Ф-вид.	ИК, КР	ЭПР	ЯМР, ЯКР

УФ-видимая спектроскопия

Электронные спектры обусловлены переходами между электронными энергетическими уровнями.

Чем определяются электронные спектры?

Для атомов

электронной конфигурацией атомов

Для комплексов

электронной конфигурацией центрального иона и его окружением

Электронные переходы в комплексах имеют энергию, соответствующую УФ и видимой областям электромагнитного спектра

Дополнительные цвета

Комплексы, поглощающие в видимой области спектра, имеют разную окраску в проходящем и отраженном свете

Окраска комплексов

УФ-видимый спектр [Cr(H₂O)₆]³⁺

Почему 3 линии в спектре ?

Колебательная спектроскопия (ИК, КР)

Каждая молекула представляется как набор *шарик*ов (атомы) и *пружин* (связи между ними)

Применяется модель гармонического осциллятора:

При отклонении от равновесного положения возникает возвращающая сила F:

F = -kx

к – силовая константа, **х** – параметр смещения.

Энергия колебания гармонического осциллятора:

E ~ h_ν = (h/2π) (k[·] μ)^{1/2} (μ – эффективная масса)

Колебания проявляются в диапазоне 40 – 4000 см-1

```
соответствует ИК-области
```

Колебания молекул воды

Для каждой молекулы есть свой набор колебаний с характеристическими частотами

Их число определяется формулой 3N-6 или 3N-5 для линейных молекул

Частоты смещаются, если вода – лиганд. Смещение зависит от:

- 1) природы и степени окисления ц.а.
- 2) дентатности воды как лиганда

v₁ v₃ 3600 - 3320 v₂ 1650 - 1600
Типичные частоты колебаний

Тип колебания	Диапазон частот	Тип колебания	Диапазон частот
Валентные колебания		Деформационные колебания	
v (O–H)	3600-3000	δ (O–H), δ (N–H)	1650-1550
v (C≡C), v (C≡N)	2400-2100	δ (C–H)	1450-1250
v (P–H), v (C–H)	2250-2100	δ (C–Ο), δ (C–N)	1300-1000
v (C=O)	1850-1650	δ (C–H), δ (N–H)	950-800
v (C=C), v (N=O),	1750-1600	δ (Si–O), δ (P=O)	700-550
v (C=N)			
v (N=N)	1650-1450	δ (S–O)	650-450
v (Si–O), v (P=O)	1300-1000		
v (S–O)	1000-800		
v (C-CI)	750-690		

Распознавание изомеров

КР-спектр цис и транс изомера $PtCl_2(NH_3)_2$

Отнесение спектра сложной молекулы

Спектроскопия ядерного магнитного резонанса (ЯМР)

- 1. Атомное ядро имеет спин $I \ge 0$
- 2. Атомное ядро имеет квадрупольный момент, если I > 1/2
- Свойства атомного ядра элемента зависят от числа нейтронов (изотопный эффект)

Для ЯМР-спектроскопии пригодны ядра, которые имеют:

- 1. Спин ядра I > 0
- 2. Малый квадрупольный момент
- 3. Большую восприимчивость (произведение чувствительности ядра на распространенность изотопа)
 - В ЯМР-спектроскопии проявляется взаимодействие ядер с электронами

Спектр ЯМР

Ядро с I > 0 имеет 2I + 1 ориентаций относительно приложенного магнитного поля

Легче всего регистрировать спектр, если I = 1/2

В случае I ≥ 1 спектр осложняется квадрупольным взаимодействием.

Чем больше I, тем сложнее спектр.

Основные параметры ЯМР-спектра

Химический сдвиг

$$5$$
 = 10⁶ · (v – v_{ref})/ v_{ref}

и – наблюдаемая частота в спектре

v ref – частота стандарта

химический сдвиг (выражается в м.д.)

 v_{ref} устанавливается для каждого ядра v_{ref} (¹H) = v_{Si} (CH₃)₄ v_{ref} (³¹P) = $v_{H_3}PO_{4 (85\%)}$

> Если δ < 0, то ядро экранировано Если δ > 0, то ядро деэкранировано

Например, в спектре ¹Н:

 $\delta < 0$ для H–Co(CO)₄ $\delta > 0$ для H₂SO₄

Спин-спиновое взаимодействие – 1

Расположенные близко друг от друга ядерные спины взаимодействуют

Число и спин взаимодействующих ядер определяют мультиплетность спектра М

M = 2nI + 1

Figure 6-10 Shriver & Atkins Inorganic Chemistry, Fourth Edition © 2006 by D.F. Shriver, P.W. Atkins, T.L. Overton, J.P. Rourke, M.T. Weller, and F.A. Armstrong

Спин-спиновое взаимодействие – 2

Другие резонансные методы

1. Спектроскопия электронного спинового резонанса (ЭСР), другое название – электронного парамагнитного резонанса (ЭПР)

Спектр возникает в результате резонансного поглощения электромагнитного излучения неспаренными электронами.

Позволяет получать информацию о:

- 1) Парамагнитных центрах
- 2) Концентрации парамагнитных примесей
- 3) Особенностях химической связи
- 4) Распределении электронной плотности в кристалле

Другие резонансные методы

2. Мессбауэровская спектроскопия (ЯГР)

Спектр возникает в результате резонансного поглощения без отдачи атомным ядром монохроматического ү-излучения, испускаемого радиоактивным источником.

Позволяет получать информацию о:

1) Электронной структуре атома в соединении

2) Симметрии распределения электронной плотности

3) Степени ионности химической связи

Основные мессбауэровские изотопы:

⁵⁷Fe, ¹¹⁹Sn, ¹²¹Sb, ¹²⁵Te, ¹⁵¹Eu, ¹⁹¹Ir, ¹⁹⁷Au

«Кальмар»

СКВИД-магнетометр S700 производства компании Cryogenic (Англия) 12 млн.руб.

Магнетохимия

При наличии неспаренного электрона возникает <u>парамагнетизм</u>

Соединения с неспаренным электроном <u>парамагнитны</u> Соединения без неспаренных электронов <u>диамагнитны</u> <u>Парамагнитные</u> вещества <u>втягиваются</u> магнитным полем, <u>Диамагнитные</u> вещества <u>выталкиваются</u> магитным полем

В веществе, помещенном в магнитное поле напряженностью H, развивается намагниченность M = χ H,

где χ – <u>магнитная восприимчивость</u>.

- χ мала и отрицательна для диамагнетиков,
- χ мала и положительна для парамагнетиков

а также

- χ велика и положительна для ферромагнетиков
- χ велика и отрицательна для сверхпроводников

А.Гейм «Шнобелевская премия» по физике 2000 г. Нобелевская премия По физике, 2010 г. (графен)

Магнитные измерения

Предсказание для d-металлов:

$$\mu = \sqrt{n(n+2)} = 4\sqrt{S(S+1)}$$

n – число неспаренных электронов; S – суммарный спин

dn ион μ_{s} μ_{obs} $\begin{array}{c} {\rm Ti}^{3^{+}} \\ {\rm V}^{4^{+}} \\ {\rm V}^{3^{+}} \\ {\rm Cr}^{3^{+}} \\ {\rm Cr}^{2^{+}} \\ {\rm Cr}^{2^{+}} \end{array}$ d^1 1.73 1.6 - 1.8 d^1 1.7 - 1.81.73 d² d³ 2.83 2.7 - 2.93.88 3.8-3.9 d^4 (hs) 4.90 4.7-4.9 d^4 (ls) 2.83 3.2-3.3 d^4 Слабое поле Сильное поле Co^{2^+} d^7 (hs) 3.88 4.3 - 5.2Co²⁺ Ni²⁺ d⁷ (ls) 1.8 - 1.91.73 d^8 2.83 2.8 - 3.5 Cu^{2+} d9 1.73 1.7 - 2.2

Магнитные моменты октаэдрических комплексов

 $\mu_s \neq \mu_{obs}$

межэлектронное отталкивание спаренных электронов спин-орбитальное взаимодействие (сильное для 4d и 5d)

Магнитные материалы

Петля гистерезиса

Петля гистерезиса и основные параметры магнитных материалов.

Изменение доменной структуры в процессе намагничивания ферромагнитного материла.

Суперпарамагнетизм

Относительная стабильность одно- и многодоменных частиц.

Зависимость коэрцитивной силы от размера частиц.

Ферромагнитные нанопроволоки

«Разрез»

Растворение пористой матрицы

Анизотропия свойств

Термический анализ

(Perkin Elmer CIIIA, 2002)

Диапазон температур – 20 - 1300°C

Скорость нагрева - от 0.01 - 100 °С/мин

Масса навески – от 5 до 200 мг

Материал тиглей - Pt

Чувствительность весов - 0.2 мкг

Атмосфера: воздух, инертный газ или вакуум (до 2 Торр)

Скорость потока газа - до 1000 мл/мин

Формат вывода: Excel файл

Термоанализатор Perkin Elmer Pyris Diamond

Термопары

при 0°С : $\pi_{\text{Pt,Cu}} - \pi_{\text{Pt/I3}\% \text{Rh,Cu}} = \pi_{\text{Pt,Pt/I3}\% \text{Rh}}$ Схема цепи с термопарой.

Эффект Пельтье и Томсона в термопаре.

В обоих контактах (измерительный и холодный спаи) возникает как эдс Пелтье, так и эдс Томсона (различны температуры и температурные градиенты). Результирующая по всему контуру эдс равна их алгебраической сумме и, как правило, отлична от нуля. В результате по контуру будет идти ток, зависящий от разности температур спаев (эффект Зеебека).

Термогравиметрия, ТГА - ДТА

Термический анализ CaC₂O₄*2H₂O (красная - DTG, синяя - TG, зеленая - DTA)

Сканирующий Зондовый Микроскоп NT-MDT NTEGRA Aura

(NT-MDT, Россия 2005)

Сканирующая Туннельная Микроскопия

Gerd Binnig Heinrich Rohrer

- **1981** создание первого СТМ получение атомарного разрешения (IBM, Цюрих)
- 1986 Нобелевская премия

Сканирующая Туннельная Микроскопия

Пиролитический графит в вакууме

СТМ Зонды

Атомно-Силовая Микроскопия

АСМ Зонды

АСМ Зонды высокого разрешения

жидкие кристаллы

Сканирующая Зондовая Микроскопия

3D и 2D визуализация

Атомно-Силовая Микроскопия

Атомно-Силовая Микроскопия tapping mode[™] и безконтактные режимы

Жидкофазная эпитаксия

Магнитные наночастицы Fe₂O₃

Магнитные АСМ Зонды

Со-Сг покрытие 300 – 400 Ое

Со наночастица

поверхность жесткого диска

Проводящие АСМ Зонды

Ti-Pt, Pt, Cr-Au, Ptlr покрытия зонды из высоколегированого кремния

SWNT

BaTiO₃

Примеры изображений

