УДК 539.19

СТРУКТУРА И СПЕКТРЫ КЛАСТЕРОВ ХЛОРИДА ВОДОРОДА

А. В. Шабатина, А. В. Немухин

(кафедра физической химии)

Неэмпирическими методами квантовой химии рассчитаны равновесные геометрические параметры, энергии и гармонические частоты колебаний для основных изомеров кластеров хлорида водорода (HCl)_n (n = 2-5). Полная оптимизация параметров без симметрийных ограничений и расчет силовых постоянных проведены в рамках теории возмущений Меллера– Плессе второго порядка с использованием трехэкспонентных, а также корреляционно-ориентированных базисных наборов. Результаты сопоставлены с соответствующими данными для кластеров (HF)_n.

Изучение свойств молекулярных кластеров позволяет моделировать поведение вещества в конденсированном состоянии. Особая роль отводится кластерам, молекулы которых стабилизированы водородными связями, поскольку на этом пути можно приблизиться к теоретическому предсказанию свойств как чистых растворителей, так и растворов, а также свойств молекулярных матриц. В наших предшествующих работах неэмпирические и полуэмпирические методы квантовой химии применялись для расчетов свойств кластеров (HF)_n [1,2], Cl⁻(HF)_n [3], (H₂S)·(H₂O)_n [4].

По мере развития неэмпирических методов квантовой химии становятся все более доступными для надежных расчетов системы, состоящие из групп взаимодействующих молекул. Основные трудности связаны с необходимостью учета эффектов электронной корреляции даже на стадии оптимизации геометрических параметров.

В настоящей работе мы рассматриваем строение молекулярных кластеров $(HCl)_n$ (n = 2-5), структурные параметры которых были найдены как стационарные точки на мно-

$$\begin{array}{c} H \\ r_{a} \\ Cl \end{array} \xrightarrow{R} \\ \theta_{d} \\ H \\ r_{d} \end{array} \xrightarrow{R} Cl \\ H \\ r_{d} \end{array}$$

Рис. 1. Равновесная геометрия димера хлорида водорода

гомерных поверхностях потенциальной энергии (ППЭ) основных электронных состояний, построенных в рамках теории возмущений Меллера–Плессе второго порядка (МП2) с двумя достаточно широкими базисными наборами.

В первом случае был взят трехэкспонентный базис TZV [5], дополненный поляризационными функциями d- и р-типа на атомах хлора и водорода соответственно.

Во втором случае был использован современный вариант также трехэкспонентного базиса, но ориентированного на неэмпирические расчеты с учетом эффектов электронной корреляции aug-cc-pVTZ [6]. Качество базисов можно оценить при сравнении вычисленных методом МП2 значений сродства к электрону атома хлора. (TZV – 2,948 эВ, aug-cc-pVTZ – 3,600 эВ, экспериментальная величина 3,614 эВ). По этому критерию базис aug-cc-pVTZ представляется более адекватным для описания систем с существенной поляризацией электронной плотности. Расчеты, включающие градиентную оптимизацию геометрических параметров методом МП2 и анализ силовых постоянных для проверки истинности найденных минимумов на ППЭ, проводили с использованием пакета программ PC GAMESS [7, 8].

Свойства димера

Рассчитанные равновесные геометрические параметры, а также энергии связи с учетом базисной суперпози-

Таблица 1

Экспериментальные и рассчитанные равновесные геометрические параметры и энергии связи в межмолекулярных комплексах (HCl)₂ и (HF)₂ (в скобках приведены значения энергии с учетом базисной суперпозиционной ошибки)

Метод расчета	D _e , ккал/моль	R, [–]	<i>r</i> _d , ⁻	<i>r</i> _a , ⁻	Ө _d , град	Θа, град
	(HCl) ₂					
TZV+1d(Cl)+1p(H)	1,78 (1,32)	3,930	1,278	1,277	7,1	97,9
aug-cc-pVTZ	2,39 (2,03)	3,748	1,280	1,277	6,9	87,7
PS+VP ^s (2d) ^s	2,31 (1,62)	3,832	1,278	1,276	5,0	94,1
Эксперимент	2,0	3,81-3,84	-	_	9,0	90,0
	(HF) ₂					
MП2, aug-cc-pVTZ	4,71 (4,22)	2,746	0,928	0,925	6,37	111,2
CCSD(T)	4,6 (4,6)	2,73	0,922	0,920	7,0	111,0

Рис. 2. Равновесная геометрия молекулярных комплексов: 1 – (HCl)₃, 2 – (HCl)₄, 3 – (HCl)₅

ционной ошибки в димере хлорида водорода (рис. 1) приведены в табл. 1. Здесь приведены экспериментальные данные [10, 11, 12], результаты предшествующих расчетов методом МП2, но с использованием приближения эффективного остовного потенциала (PS+VP^s(2d)^s [13]), а также результаты расчетов димера фторида водорода [14].

Наинизшая по энергии конфигурация димера (HCl)₂, отвечающая точечной группе C_s, описывается почти линейным расположением атомов Cl–H…Cl. Мостиковый атом водорода (H_d) отклоняется от прямой Cl…Cl на 7°. Молекула хлорида водорода, которая является акцептором протона в межмолекулярном комплексе (рис. 1), расположена почти перпендикулярно к этой прямой. Эти результаты хорошо согласуются с найденными экспериментально значениями углов \angle H_dClCl (Θ_d) и \angle H_aClCl (Θ_a) [12].

Переход этой структуры в симметрично эквивалентную, в которой роли молекул мономера в межмолекулярном комплексе меняются на противоположные, осуществляется через циклическое переходное состояние, имеющее симметрию C_{2h} [13].

Равновесные структуры димера фторида водорода [2, 14] и хлорида водорода достаточно похожи, но энергия связи в межмолекулярном комплексе по отношению к сумме энергий мономеров почти в два раза больше в случае димера фторида водорода.

Для сравнения в табл. 1 приведены также результаты расчетов геометрических параметров и энергии связи в комплексе (HF)₂ в рамках метода связанных кластеров (вариант CCSD(T)) [14], который в настоящее время считается наилучшим неэмпирическим методом квантовой химии для анализа исследуемых систем. В расчетах были использованы корреляционно ориентированные базисные наборы aug-cc-pVxZ (x = D, T, Q u 5). При постепенном увеличении базиса значения рассчитываемых параметров системы A(x) сходятся к предельному значению А(х=∞), отвечающему использованию полного набора базисных функций. Часто связь между А(х) и А(∞) хорошо описывается простой экспоненциальной функцией: $A(x) = A(\infty) + Be^{-Cx}$, и именно это уравнение было использовано для нахождения предельных значений исследуемых характеристик комплексов, приведенных в табл. 1.

Сравнение литературных данных для (HF)_n, полученных в рамках теории возмущения Меллера–Плессе второго порядка и метода связанных кластеров, позволяет оценить погрешность расчетов в приближении МП2 по сравнению с методом CCSD(T). Разница в межъядерных расстояниях не превышает 0,004Å, а энергии связи в межмолекулярном комплексе отличаются на 0,12 ккал/моль. Это означает, что метод МП2 может быть использован для

Свойства олигомеров

Результаты расчетов равновесных геометрических параметров, а также энергий связи в межмолекулярных комплексах хлорида водорода (рис. 2) приведены в табл. 2.

Глобальные минимумы на поверхности потенциальной энергии тримера и тетрамера хлорида водорода отвечают циклическим структурам, имеющим симметрию C_{3h} и C_{4h} соответственно.

Увеличение размера кластеров проявляется в монотонном изменении ряда равновесных геометрических параметров: удлинении связи H–Cl по отношению к мономеру, а также в сокращении расстояния Cl–Cl. Наблюдается тенденция к более линейному расположению атомов Cl– H…Cl при увеличении размера кластеров: так, в тримере угол ∠HClCl = 19,7°, тогда как в тетрамере он составляет всего 8,7°.

Расчеты, полученные с двумя базисными наборами в настоящей работе, а также в [13], дают качественно одинаковые результаты, хотя в отличие от димера значения параметров варьируются в более широких пределах. Так как базис aug-cc-pVTZ ориентирован на неэмпирические

Таблица 2

Рассчитанные равновесные геометрические параметры и энергии связи для олигомеров хлорида водорода (в скобках приведены значения энергии с учетом базисной суперпозиционной ошибки)

Параметр	TZV+1d(Cl)+ 1p(H)	Aug-cc-pVTZ	PS+VP ^s (2d) ^s			
(HCl) ₃						
r, ⁻	1,281	1,286	1,282			
R, ⁻	3,818	3,817	3,736			
Ө _{сісін} , град	19,7	14,5	16,8			
D _е , ккал∕моль	5,70 (4,16)	8,10 (7,10)	(5,31)			
(HCl) ₄						
r, ⁻	1,283	1,289	1,285			
R, ⁻	3,774	3,607	3,683			
$\Theta_{ ext{CICIH}}$, град	8,7	2,8	4,2			
D _e , ккал/моль	9,25 (7,68)	12,74 (11,21)	(8,64)			
(HCl) ₅						
r, ⁻	1,283	1,289				
R, ⁻	3,755–3,767	3,580-3,601				
$\Theta_{\text{сісін}}$, град,	1,2–5,4	1,2–4,4				
<i>D</i> _е , ккал/моль	11,90 (8,97)	16,36 (14,34)				

Рис. 3. Зависимость энергии связи в межмолекулярных комплексах от их размера: $l - (HCl)_n$, $2 - (HF)_n$

расчеты с учетом эффектов электронной корреляции, то результаты, полученные с использованием этого базиса, являются более надежными для анализа свойств исследуемых систем.

Равновесная структура пентамера хлорида водорода, впервые рассмотренная в нашей работе, не отвечает плоской циклической системе, имеющей симметрию C_{5h} . Таким образом, начиная с пентамеров, наблюдается отличие в равновесной геометрии комплексов фторида водорода [15] и хлорида водорода. Равновесные структуры олигомеров (HF)_n являются плоскими вплоть до значения n = 6. На рис. 3 приведена зависимость энергии связи в межмолекулярных комплексах хлорида водорода и фторида водорода [2] от их размера. Величина энергии почти в два раза больше в случае олигомеров $(HF)_n$. Энергия связи в межмолекулярном комплексе, приходящаяся на одну водородную связь, монотонно увеличивается при постепенном увеличении размера кластеров вплоть до n = 4-5, а затем принимает постоянное значение, равное 7,5 и 3,3 (2,9) ккал/моль для комплексов $(HF)_n$ и $(HCl)_n$ соответственно.

Таким образом, в данной работе проведен систематический анализ параметров молекулярных кластеров $(HCl)_n$ (n = 1-5) с помощью неэмпирических расчетов с учетом электронной корреляции. Впервые приведены результаты расчетов пентамера хлорида водорода.

Сопоставление результатов квантово-химических расчетов свойств кластеров фторида и хлорида водорода, (HF)_n и (HCl)_n, позволяет выделить определенные тенденции в строении таких систем, как фрагменты молекулярных матриц, в которые могут внедряться другие частицы. Подобная информация в конечном итоге будет использована для моделирования свойств растворов на микроуровне. Из всех систем, стабилизированных водородными связями, галогенводороды представляют наиболее простой случай.

Авторы благодарят А.А. Грановского за помощь в проведении квантово-механических расчетов.

При написании данной статьи использованы работы, поддержанные РФФИ (проект 98-03-33168).

СПИСОК ЛИТЕРАТУРЫ.

- Grigorenko B.L., Nemukhin A.V., Apkarian V.A. // J. Chem. Phys. 1998. 108. P. 4413.
- Grigorenko B.L., Moskovsky A.A., Nemukhin A.V. // J. Chem. Phys. 1999. 111. P. 4442.
- Nemukhin A.V., Granovsky A.A., Firsov D.A. // Mend. Commun. 1999. 6. P. 217.
- Шабатина А.В., Немухин А.В. // Вест. Моск. ун-та. Сер. 2. Химия. 1999. 40. С. 147.
- 5. Mclean A.D., Chandler G.S. // J. Chem. Phys. 1980. 72. P. 5639.
- Dunning T.H. // J. Chem. Phys. 1989. 90. P. 1007; Woon D.E., Dunning T.H. // J. Chem. Phys. 1993. 98. P. 1358.
- Granovsky A.A. // URL http://classic.chem.msu.su/gran/gamess/ index.html

- Schmidt M.W., Baldridge K.K., Boatz J.A. et al. // J. Comput. Chem. 1993. 14. P.1347
- 9. Boys S.F., Bernardi F. // Mol. Phys. 1970. 19. P. 553.
- 10. Ohashi N., Pine A.S. // J. Chem. Phys. 1984. 81. P.73.
- Blake G.A., Busarow K.L., Cohen R.C. et al. // J. Chem. Phys. 1988. 89. P.6577.
- 12. Elrod M.J., Saykally R.J. // J. Chem. Phys. 1995. 103. P. 933.
- 13. Latajka Z., Scheiner S. // Chem. Phys. 1997. 216. P. 37.
- 14. Peterson K.A., Dunning T.H. // J. Chem. Phys. 1995. 102. P. 2032.
- Quack M., Suhm M.A. // Conceptual Perspectives in Quantum Chemistry, ed. by S.-L. Calais & E.S. Kryachko (Kluwer Publishing Co., Dordrecht, 1997), V. III. P. 417.

Поступила в редакцию 20.01.2000