УДК 541.49: 542.91

СИНТЕЗ 5-(ДИМЕТИЛХЛОРСИЛИЛ)-1,3-ДИ(*mpem-*-БУТИЛ)ЦИКЛОПЕНТАДИЕНА И ИССЛЕДОВАНИЕ [1,5]--ЭЛЕМЕНТОТРОПНОЙ ПЕРЕГРУППИРОВКИ В НЕМ МЕТОДОМ ДИНАМИЧЕСКОГО ЯМР-¹Н

О. Ю. Савельев, В. И. Мстиславский, Н. Н. Землянский*, И. В. Борисова*, Ю. А. Устынюк

(кафедра органической химии)

Синтезирован 5-(диметилхлорсилил)-1,3-ди(*трет*-бутил)циклопентадиен. Обнаружено, что он существует в виде одного изомера с аллильным расположением диметилхлорсилильной группы, способной испытывать быструю миграцию между положениями 5 и 4. Активационный барьер этой элементотропной перегруппировки, определенный методом анализа полной формы линии спектров динамического ЯМР в интервале температур 233–363 К ($\Delta G^{\sharp}_{298} = 54,3 \pm 0,4 кДж/моль, \Delta S^{\sharp} = -16,9 \pm 2,9 Дж/(моль·К))$, существенно ниже, чем для миграции кремнийорганической группы в циклопентадиенильном кольце, не имеющем алкильных заместителей.

Общим свойством циклопентадиена и его производных является протекание [1,5]-сигматропных перегруппировок, состоящих в перемещениях атомов водорода (прототропные перегруппировки) и элементоорганических заместителей (элементотропные перегруппировки) в кольце из положения 5 в одно из соседних положений (1,2сдвиг).

Элементотропные перегруппировки производных циклопентадиена были впервые обнаружены Пайпером и Уилкинсоном для $(\eta^1 - C_5 H_5)(\eta^5 - C_5 H_5)(CO)_2$ Fe и $(\eta^1 - C_5 H_5)_2$ Hg [1, 2]. Позднее они наблюдались Фритцем и Крейтером для циклопентадиена с кремний-, германий- и оловоорганическими заместителями [3]. Прототропные перегруппировки были открыты в 5-дейтероциклопентадиене и алкилциклопентадиенах В.А. Мироновым и сотр. [4].

Миграции элементоорганических групп в циклопентадиенильном кольце, не содержащем других заместителей представляют собой вырожденный процесс (1).

При наличии в циклопентадиенильном кольце помимо мигрирующей группы других заместителей сигматропные перегруппировки становятся невырожденными. В замещенных циклопентадиенах миграция атомов водорода приводит к образованию равновесных смесей изомеров с заместителем в аллильном и винильных положениях кольца [5] (2).

Равновесное соотношение изомеров (А)–(С) определяется природой заместителя Х. Углеводородные заместители располагаются преимущественно в винильных положениях. Для большинства η^1 -циклопентадиенильных производных переходных и непереходных элементов меньшую энергию имеют изомеры с элементоорганическими группами в аллильном положении. Исключение составляют η^1 -циклопентадиенильные соединения бора.

Элементоорганические производные циклопентадиена и элементотропные перегруппировки в них были предметом подробных исследований [6]. Энергии активации [1,5]-сигматропных сдвигов атомов водорода в замещенных циклопентадиенах составляют около 120 кДж/моль. Активационные барьеры для миграции элементоорганических групп более низкие, они изменяются в широких пределах – от 112 кДж/моль для миграции PMe₂ в C₅Me₅PMe₂ [7] до 33 кДж/моль для миграции SnMe₃ [8] в C₅H₅SnMe₃. Высота активационного барьера определяется элементом, атом которого связан с кольцом, и уменьшается в ряду элементов при увеличении атомного номера.

Наиболее информативным методом исследования обратимых перегруппировок, имеющих энергии активации в диапазоне от 100 до 30 кДж/моль, является метод динамического ЯМР (ДЯМР), поскольку такие процессы отчетливо проявляются в изменении положений и формы линий спектров ЯМР с изменением температуры. Теория спектров ЯМР достаточно хорошо развита [9]. Наиболее точно

^{*} Государственный научно-исследовательский институт химии и технологии элементоорганических соединений (ГНИИХТЭОС).

определять кинетические параметры процессов позволяет подход, называемый анализом полной формы линии (АПФЛ) спектров ДЯМР, представляющий собой регрессионный анализ соответствия экспериментальных и расчетных спектральных линий.

Метод ДЯМР широко применяли в изучении элементоорганических производных циклопентадиена. Подробно изучены перегруппировки полиметаллированных циклопентадиенов с 2, 3 и 4 элементоорганическими группами в кольце [10–13], а также особых элементоорганических производных циклопентадиена 4-элементатетрагидроиндаценов [14], [15] и 4,8-диэлементатетрагидроиндаценов [16]. Этим веществам свойственны более сложные системы равновесий и перегруппировок, чем те, что имеют место для монозамещенных производных.

Значительно меньше сведений имеется в литературе об элементоорганических производных алкилциклопентадиенов. Среди соединений этого типа помимо производных пентаметилциклопентадиена (I), ставших объектами подробного изучения [7, 17, 18], более других исследованы элементоорганические производные метилциклопентадиена (II) [17], [19], [20] и ди(*трет*-бутил)циклопентадиена (III). Ряд производных III с элементоорганическими заместителями SiMe₃ (IV), SiCl₃ (V), GeMeCl₂ и SnMe₃ был синтезирован Ютци и сотр. [21]. На основе качественного изучения спектров ЯМР авторы обнаружили протекание вырожденной элементотропной перегруппировки, при которой элементоорганический заместитель мигрирует только между двумя позициями (4 и 5) в кольце (3).

Наличие *трет*-бутильных групп в положениях 1 и 3 препятствует миграции элементоорганического заместителя в положения 1, 2 и 3, которая привела бы к появлению структурных изомеров. Метильные группы в производных I и II, как установлено в работах [7], [17–20], оказывают менее сильное влияние на протекание перегруппировок.

Количественные данные об активационных барьерах элементотропных перегруппировок в производных 1,3-ди(третбутил)циклопентадиена (3) представляют значительный интерес, но эти сведения не были получены Ютци и сотр. для синтезированных ими соединений. Это побудило нас синтезировать еще один представитель указанного ряда соединений – 5-(диметилхлорсилил)-1,3--ди(третбутил)циклопентадиен (VI) и провести количественное изучение элементотропной перегруппировки в нем посредством АПФЛ ДЯМР.

Обсуждение результатов

Синтез (VI) был осуществлен нами по схеме (4) из III, который представляет собой равновесную смесь региоизомеров IIIa и IIIb через его литиевую соль VII согласно методике, разработанной Ютци и сотр. [21]. Для подавления нежелательной побочной реакции замещения второго атома хлора реакцию проводили с большим избытком SiMe₂Cl₂, причем добавление SiMe₂Cl₂ к литиевой соли VII проводили быстро. Структура (VI) была подтверждена данными ГХ-МС и ЯМР. Вещество было идентифицировано по спектрам ЯМР ¹H, ¹³C, ²⁹Si и методом хромато-масс-спектрометрии.

Ряд спектров ЯМР ¹Н при различных температурах в интервале от -40 до $+90^{\circ}$ (растворитель – толуол-d₈) представлен на рис. 1. В спектрах проявляется температурная зависимость, указывающая на протекание химического обмена.

В спектрах ЯМР ¹Н при температурах ниже 0° наблюдаются 7 сигналов с соотношением интенсивностей 1:1:1:9:9:3:3. Число и расположение сигналов соответствуют структуре изомера, в котором алкильные заместители занимают в кольце положения 1 и 3, а группа SiMe₂Cl – положение 5. При –40° сигналы имеют химические сдвиги 6,42 м.д. (H₂); 5,73 м.д. (H₄); 3,40 м.д. (H₅); 1,30 и 1,10 м.д. (*трет*-бутильные группы); 0,32 и 0,04 м.д. (метильные группы при атоме кремния). Таким образом, при низких температурах VI представлено единственным изомером. Лишь при температурах выше 50° в области протонов алкильных и кремнийорганических групп появляются сигналы, которые предположительно могут быть отнесены к минорным изомерам (VI).

Отнесение сигналов протонов кольца в низкотемпературных спектрах не вызывает сомнений, поскольку значения химических сдвигов для них характеристичны. Для отнесения сигналов *трет*-бутильных групп были выполнены эксперименты по наблюдению ядерного эффекта Оверхаузера (ЯЭО) в температурной области стереохимической жесткости (при -70°). Облучение радиочастотным полем малой мощности сигнала протонов *трет*-бутильной группы при 1,30 м.д. вызвало изменение интенсивности сигналов протонов кольца H₂ и H₅, при этом не наблюдался ЯЭО на протоне H₄. Напротив, при облучении сигнала *трет*-бутильной группы при 1,10 м.д. ЯЭО наблюдался на протонах кольца H₂ и H₄ и отсутствовал на протоне H₅. На основании этих данных можно сделать однозначный вывод, что сигнал 1,3 м.д. соответствует

Таблица 1

Спектр ЯМР ¹³С (VI) в толуоле-d8 при -70°

Положения ядер	δ, м.д.
	126,537
C ₄	50.408
Четвертичные атомы С кольца (С1, С3)	157,996; 160,618
СН ₃ -группы при атоме Si	-2,111; 4,492
метильные С трет-бутильных групп	30,036; 31,848
четвертичные С <i>трет</i> -бутильных групп	32,665; 33,808

трет-бутильной группе в положении 1 кольца, а сигнал 1,1 м.д. – *трет*-бутильной группе в положении 3.

Спектры (VI) сходны со спектрами 5-(триметилсилил)-1,3-ди(третбутил)циклопентадиена (IV), представленными Ютци и сотр. [21]. Отличительной особенностью (VI) является диастереотопность двух метильных групп при атоме кремния, которые по этой причине дают сигналы с разными химическими сдвигами. Диастереотопность вызвана тем, что атом кремния в (VI) является прохиральным центром при наличии в молекуле хирального центра – атома углерода в положении 5 кольца. Еще одно различие спектров VI и IV состоит в существенно большей разнице химических сдвигов *t*-Ви-групп в спектре VI (0,2 м.д.) по сравнению со спектром IV (0,03 м.д.).Температурная зависимость спектров (VI) находится в согласии со схемой вырожденной двухпозиционной элементотропной перегруппировки (5).

В результате перегруппировки происходит попарный обмен положениями протонов *трет*-бутильных групп, диастереотопных CH_3 -групп при атоме кремния и протонов H_4 и H_5 кольца. В спектрах при повышении температуры наблюдается уширение линий обменивающихся протонов, затем их попарное слияние, а при дальнейшем повышении температуры усредненные линии сужаются. Температурные изменения спектров полностью обратимы.

Три пары усредняющихся сигналов в спектрах динамического ЯМР ¹Н (VI) существенно различаются по разностям химических сдвигов резонансных частот, поэтому их коллапс (полное слияние) происходит при разных температурах. Первое условие коллапса $1/\tau \approx \Delta v$, где τ – время жизни ядра в одном из положений, выполняется для сигналов *трет*-бутильных групп ($\Delta v = 80$ Гц) при температуре -10°, затем для сигналов CH₃-групп при атоме кремния ($\Delta v = 110 \ \Gamma \mu$) при 0°. Усредненный сигнал протонов H_4 и H_5 кольца ($\Delta v = 930$ Гц) появляется лишь при температуре около 70°. В интервале температур от 0 до 70° соответствующие Н₄ и Н₅ линии уширены настолько сильно, что практически не видны над уровнем шумов. На основании того что при миграции группы SiMe₂Cl происходит обмен положений СН₃-групп при атоме кремния, можно сделать вывод об инверсии конфигурации хирального центра в (VI) в результате перегруппировки. Это означает, что группа SiMe₂Cl до и после миграции находится по одну сторону плоскости кольца в согласии со схемой протекания [1, 5]-сигматропной перегруппировки по супраповерхностному пути.

Спектры ЯМР ¹³С (VI) были зарегистрированы при -70 и $+25^{\circ}$ в толуоле-d₈. Спектры ¹³С, как и спектры ¹Н, про-являют температурную зависимость.

При –70° в спектре помимо линий дейтеротолуола присутствуют 11 линий, по числу неэквивалентных ато-

мов углерода в молекуле VI. Отнесение этих сигналов представлено в табл. 1.

При температуре 25° в спектре наблюдаются усредненные сигналы CH₃-групп при атоме кремния (1 м.д.), метилов *трет*-бутильных групп (30,9 м.д.), четвертичных атомов углерода *трет*-бутильных групп (33,0 м.д.), четвертичных атомов углерода кольца C₁ и C₃ (159,0 м.д.), а также узкий сигнал C₂, не участвующего в обмене, при 126,5 м.д. Сигналы C₄ и C₅ аналогично сигналам протонов H₄ и H₅ в спектре ¹Н при этой температуре из-за сильного уширения не видны над уровнем шумов.

Значительная широта температурного диапазона, в котором проявляются изменения спекторв ЯМР ¹Н, позволяет определить методом АПФЛ кинетические параметры перегруппировки (5) с большой точностью.

Математическая модель исследуемой системы для АПФЛ построена на основе формализма Сэка [22]

$$I(\boldsymbol{\omega}) = \operatorname{CRe}(\mathbf{1} \cdot (\mathbf{\Omega} + \mathbf{R} + \mathbf{K})^{-1} \cdot \mathbf{p}),$$

где матрицы: Ω – частотная, R – релаксационная, K – кинетическая.

Для реализующегося в данной химической системе двухпозиционного обмена кинетическая матрица 7×7 имеет достаточно простой блочно-диагональный вид:

$$\boldsymbol{K} = \begin{pmatrix} -k_{12} & k_{21} & & 0 & \\ k_{12} & -k_{21} & & & \\ & & -k_{34} & k_{43} & & \\ & & & k_{34} & -k_{43} & & \\ 0 & & & & -k_{56} & k_{65} \\ & & & & & k_{56} & -k_{65} \\ & & & & & & 0 \end{pmatrix}, \text{ rge } k_{ij} = 1/\tau_{ij}$$

Можно представить К в виде произведения

$$\mathbf{K} = k\mathbf{P} = k \begin{pmatrix} -p_{12} & p_{21} & 0 \\ p_{12} & -p_{21} & & \\ & -p_{34} & p_{43} & \\ & p_{34} & -p_{43} & \\ 0 & & -p_{56} & p_{65} \\ & & & p_{56} & -p_{65} & \\ & & & 0 \end{pmatrix},$$

где *k* – константа скорости перегруппировки, *p_{ij}* – вероятность перехода [23].

Нулевой блок соответствует протону 2-го кольца, остальные блоки – группам обменивающихся положений. Блочная структура матрицы, а также равенство вероятностей переходов в разных блоках ($p_{ij} = 1$) позволяют искать кинетические активационные параметры отдельно для каждой из групп, а затем брать средние значения. Такая методика и была реализована.

Следует заметить, что линии протонов *трет*-бутильных групп и CH₃-групп фрагмента SiMe₂Cl не имеют мультиплетной структуры, а у протонов 4-го и 5-го колец она выражена слабо, и их можно приближенно считать синглетными. Это упрощает задачу расчета активационных параметров с применением неквантовых моделей, не учитывающих ССВ.

Рис. 1. Спектры ЯМР ^1H (VI) в интервале температур от –40 до +90°

В расчетной модели использовали выражение для константы скорости из теории активированного комплекса:

$$k = \chi \frac{k_B T}{h} \exp(-\frac{\Delta G_0 (T)}{RT})$$

при этом зависимость ΔG^{\neq} от *T* задавалась выражением

$$\Delta G^{\neq}(T) = \Delta G^{\neq}(T_0) - \Delta S^{\neq}(T - T_0).$$

Энтальпия активации вычислена по формуле

$$\Delta H^{\neq} = \Delta G^{\neq}(T_0) + T_0 \Delta S^{\neq}.$$

Найденные значения активационных параметров перегруппировки ($\Delta G^{\neq}(298)$, ΔS^{\neq} и ΔH^{\neq}) представлены в табл. 2.

Доверительные интервалы $a \pm \delta_a$, а = ΔG_{298}^{\sharp} , ΔS^{\sharp} , ΔH^{\sharp} , вычисляли из стандартных отклонений для доверительной вероятности р = 0,95 по формуле $\delta_a = 2\sigma_a$, так как число экспериментальных точек (около 2000) значительно превышает 30.

Полученные значения стандартных отклонений показывают, что соответствие расчетной модели и экспериментальных спектров является вполне приемлемым. Можно отметить хорошее соответствие друг другу данных, полученных методом АПФЛ для разных групп протонов.

Средние значения по трем группам линий: $\Delta G^{\neq}(298) = 54,28 \pm 0,38 \text{ кДж/моль}, \Delta S^{\neq} = -16,9 \pm 2,9 \text{ Дж/(моль·К)}, \Delta H^{\neq} = 49,25 \pm 1,03 \text{ кДж/моль}.$

Величины доверительных интервалов вычислены в соответствии с выражением

$$\delta = 2\sigma = 2(D_{\rm RF} + D_{\rm MF})^{1/2}$$

где дисперсия: $D_{\rm \tiny BF}$ – внутригрупповая, $D_{\rm \tiny MF}$ – межгрупповая.

Экспериментальные и рассчитанные спектры в области протонов CH₃-групп при атоме кремния для одной из температурных точек показаны на рис. 2.

Активационные параметры перегруппировки (5) мы рассчитали также по приближенной формуле, связывающей ширину спектральной линии $l_{1/2}$ с константой скорости *k*:

$$k = \pi (\mathbf{l}_{1/2} - \mathbf{l}_{1/2}^{o}).$$

По ширинам линий протонов H_4 и H_5 в пяти спектрах в температурной области медленного обмена определили константы скорости, по которым рассчитали значения $\Delta G^{\sharp}(T)$.

Для оценки ширины линии в отсутствие обмена $l^{o}_{1/2}$ была взята ширина линии протона H_{2} , который в обмене не участвует. По значениям $\Delta G^{*}(T)$ линейным методом наименьших квадратов были вычислены величины ΔG^{\sharp}_{298} , ΔS^{\sharp} , ΔH^{\sharp} , представленные в табл. 3.

Сравнение результатов, полученных на основе ширин линий в приближении медленного обмена, с данными АПФЛ показывает хорошее согласие по ΔG^{\neq} , но как и следовало ожидать, свидетельствует о невозможности получения достоверных значений энтальпийного и энтропийного вкладов из ширин линий.

Сравнение кинетических данных, полученных для (VI) с результатами, ранее полученными для серии соединений $C_5H_5Si(CH_3)_nCl_{3-n}$ [24], показывает, что введение двух *трет*-бутильных групп в положения 1 и 3 циклопентадиенильного кольца существенно понижает свободную энергию активации для 1,5-сигматропного сдвига кремнийорганической группы. При этом значительная доля этого понижения определяется, по всей видимости, энтропийным вкладом. Две объемные *трет*-бутильные группы, как можно полагать, за счет пространственных взаимодействий с группой SiMe₂Cl увеличивют угол наклона связи Si–C к плоскости цикла. Как было показано путем теоретического анализа [25], это приводит к понижению активационного барьера.

Экспериментальная часть

Синтез $tBu_2CpSiMe_2Cl$ (VI). Все операции проводили в атмосфере аргона. Используемые растворители были абсолютированы.

14,8 мл (0,070 моля) ди(*трет*-бутил)циклопентадиена III растворяли в 140 мл ТГФ, обрабатывали 35 мл 2,0 М раствора BuLi (0,070 моля) в гексане при охлаждении льдом.

Смесь нагревали до комнатной температуры и прибавляли к ней при перемешивании 24,6 г (0,1907 моля) SiMe₂Cl₂. После нескольких часов перемешивания оставляли смесь на ночь. Затем удаляли растворитель и избыток SiMe₂Cl₂ в вакууме ротационного насоса, добавляли 70 мл бензола, отфильтровывали осадок LiCl. Удаляли бензол при 30 мм рт. ст., а остаток фракционировали.

Получено 14,37 г VI (75,9%) – маслообразной жидкости желто-зеленого цвета, $T_{\rm кип}$ 60° / 3,2·10⁻² мм рт. ст.

Исследование вещества методом ГХ-МС выполнено с помощью прибора «*MS Engine HP*». Газовая хроматограмма обнаруживает один пик значительной интенсив-

Рис. 2. Соответствие экспериментальных и расчетных спектров ДЯМР (VI). Область протонов СН₃-групп при атоме кремния. Сплошная линия – расчетный спектр, точки – экспериментальный. Шкала химических сдвигов номинирована в единицах частоты (Гц). Звездочками помечены сигналы примесей

Таблица 2

Активационные параметры элементотропной перегруппировки (5) в VI

Группа ядер	Δ <i>G</i> [≠] ₂₉₈ , Дж/моль	Δ <i>S≠</i> , Дж/(моль∗К)	∆ <i>Н</i> ≠, Дж/моль
Протоны Н ₄ ,Н ₅ ЦПД-кольца	54121 ± 32	$-17,78 \pm 1,25$	48823 ± 386
Протоны <i>t</i> -Bu-групп	54537 ± 133	$-16,0 \pm 3,5$	49766 ± 918
Протоны SiMe ₂ Cl	54184 ± 71	$-16,83 \pm 2,16$	49169 ± 578

Таблица З

Активационные параметры перегруппировки $(\Delta G^{\neq}_{,98}, \Delta S^{\neq}, \Delta H^{\neq})$, рассчитанные по ширинам линий

Ядро	∆ <i>Н</i> [≠] , Дж/моль	Δ <i>S</i> ≠, Дж/(моль∙К)	Δ <i>G</i> [≠] (298), Дж/моль
Протон Н4	47700 ± 9500	$-24,9 \pm 37,5$	55155 ± 1770
Протон Н5	52060 ± 10700	$-9,1\pm42,3$	54760 ± 2000

СПИСОК ЛИТЕРАТУРЫ

- 1. Wilkinson G., Piper T.S. // J. Inorg. Nucl. Chem. 1956. 2. P. 32.
- 2. Piper T.S., Wilkinson G. // J. Inorg. Nucl. Chem. 1956. 3. 104.
- 3. Fritz H.P., Kreiter C.G. // J. Organomet. Chem. 1965. 4. P. 313.
- Mironov V.A., Sobolev E.V., Elizarova A.N. // Tetrahedron. 1963.
 1939.
- 5. Устынюк Ю.А., Кисин А.В. Оксиноид Д.Е. // ЖОХ. 1968. **38.** С. 391.
- 6. Jutzi P. // Chem. Rev. 1986. 86. P. 983.
- 7. Jutzi P., Saleske H. // Chem. Ber. 1984. 117. P. 222.
- Grishin Yu.K., Sergeev N.M., Ustynyuk Yu.A. // Org. Magn. Reson. 1972. 4. P. 377.
- 9. *Michinori Oki*. Applications of Dynamic NMR spectroscopy to organic chemistry. VCH Publishers, Inc. 1985.
- Ustynyuk Yu.A., Kisin A.V., Zenkin A.A. // J. Organomet. Chem. 1972. 37. P. 101.
- Ustynyuk Yu.A., Kisin A.V., Pribytkova I.M., Zenkin A.A., Antonova N.D. // J. Organomet. Chem. 1972. 42. P. 47.
- 12. Torochesnikov V.U., Tupcianskas A.P., Ustynyuk Yu.A. // J. Organomet. Chem. 1974. 81. P. 351.
- 13. Jutzi P., Sauer J. // J. Organomet. Chem. 1973. 50. P. 29.
- Нифантьев И.Э., Шестакова А.К., Леменовский Д.А., Словохотов Ю.Л., Стручков Ю.Т.. Металлоорганическая Химия. 1991.
 P. 292.

ности, масс-спектр которого соответствует структуре (диметилхлорсилил)ди(*трет*-бутил)циклопентадиена. В нем содержатся характерные дублеты с соотношением интенсивностей 3:1, соответствующие ионам с изотопами ³⁵Cl / ³⁷Cl при m/e 270 и 272 (M⁺), 255 и 257 (M⁺ – CH₃), 199 и 201 (M⁺ – *t*-Bu), 93 и 95 (SiMe₂Cl⁺), а также пики 121 (C₅H₄*t*-Bu⁺), 65 (C₅H₅⁺), 57 (C₄H₉⁺) и 41 (C₃H₅⁺).

Исследование VI методом ЯМР. Определение активационных параметров элементотропной перегруппировки. Спектры ЯМР регистрировали на приборе «Varian VXR-400» в толуоле- d_8 . Спектры ЯМР ¹Н были записаны при температурах -40, -30, -20, -10, 0, +28, +50, +70, +90° в стандартной ампуле (5 мм) с крышкой при давлении 1 атм.

После выполнения преобразования Фурье электронные версии спектров, содержащие значения спектральной интенсивности как функции частоты, были преобразованы в текстовый формат, а затем разделены на фрагменты, соответствующие группам обменивающихся ядер. Для численной обработки данных использовали программу DISPARD итерационного поиска активационных параметров по методу АПФЛ ДЯМР, разработанную в лаборатории ЯМР химического факультета МГУ В.И. Мстиславским [26].

- Нифантьев И.Э., Ярных В.Л., Борзов М.В., Мазурчик Б.А., Мстиславский В.И., Рознятовский В.А., Устынюк Ю.А. // Металлоорганическая химия. 1991. 4. С. 1269.
- Ярных В.Л., Мстиславский В.И., Землянский Н.Н., Борисова И.В., Рознятовский В.А., Устынюк Ю.А. // Изв. АН. Сер. Хим. 1997. С. 1285.
- 17. Davison A., Rakita P.E. // Inorg.Chem. 1970. 9. P. 289.
- Jutzi P., Saleske H., Buhl D., Grohe H. // J. Organomet. Chem. 1983. 252. P. 29.
- Angus P.C., Stobart S.R. // J. Chem. Soc. Dalt. Trans. 1973. 21. P. 2374.
- Bonny A., Stobart S.R., Angus P.C. // J. Chem. Soc. Dalt. Trans. 1978. 8. P. 938.
- Sultan T. Abu-Orabi, Jutzi P. // J. Organomet.Chem. 1987. 329.
 P. 169.
- 22. Sack R.A. // Molecular Physics. 1958. 1. P. 163.
- Dynamic NMR Spectroscopy / Ed. by L.M. Jackson, F.A. Cotton. N.Y., 1975.
- 24. Sergeyev N.M., Avramenko G.I., Kisin A.V., Korenevsky V.A., Ustynyuk Yu.A. // J. Organomet. Chem. 1971. **32.** P. 55.
- Shchembelov G.A., Ustynyuk Yu.A. // J. Am Chem. Soc. 1974. 96.
 P. 4189.
- 26. Мстиславский В.И. Дис. ... канд. физ.-мат. наук. М., 1985.

Поступила в редакцию 25.01.2000