УДК 541.183

АДСОРБЦИЯ ЦИТОХРОМА С НА ГИДРОКСИЛИРОВАННЫХ И ТРИМЕТИЛСИЛИЛИРОВАННЫХ СИЛИКАГЕЛЯХ

Т.Д. Хохлова

(кафедра физической химии)

Сопоставлена адсорбция цитохрома С на силикагелях (со средними диаметрами пор от 2,5 до 240 нм), гидроксилированных и гидрофобизированных триметилхлорсиланом. В 2%-м изопропаноле в воде при рН 7 максимальная адсорбция (в расчете на 1 г) наблюдалась на гидроксилированных силикагелях при диаметре пор 5-14 нм, а на гидрофобизированных – при 14–36 нм. При введении электролита (NaCl) в раствор сдвигает максимум адсорбции на гидроксилированных силикагелях в сторону еще более узких пор. При адсорбции на гидрофобизированных силикагелях этого сдвига не происходит. Изучены также кинетика и рН-зависимость адсорбции.

Силикагели широко используют в качестве носителей адсорбированных ферментов и других белков, а также для очистки растворов белков [1-3]. Для изучения влияния химии поверхности и пористой структуры на адсорбцию белков была рассмотрена адсорбция цитохрома С на двух сериях образцов гидроксилированных и триметилсилилированных силикагелей с диаметрами пор от 2,5 до 250 нм. Цитохром С был выбран потому, что он является основным белком и хорошо адсорбируется на силикагелях, поверхность которых, как известно, обладает кислотными свойствами [4].

Экспериментальная часть

В работе использовали цитохром C (Sigma, код C 2037); изоэлектрическая точка pI 9,7, гидродинамический диаметр глобулы d = 3,4 нм [2]. Структурные характеристики взятых для исследования отечественных силикагелей, приведены в табл. 1. Удельные поверхности S были измерены по адсорбции криптона [5]. Объем пор V был определен по капиллярной конденсации бензола, а для самого широкопористого образца - по насыпному весу. Средний диаметр пор D был рассчитан по формуле D = 4 V/S. Средний размер зерен силикагеля составлял около 40 мкм. Для получения I серии образцов селикагели промывали концентрированной соляной кислотой (до исчезновения

Структурные характеристики силикателей					
Марка силикагеля	<i>S</i> , м ² /г	<i>V</i> , см ³ /г	<i>D</i> _{<i>c</i>} , нм		
KCM-5	800	0,50	2,5		
KCC-3	600	0,75	5,0		
КСК-2	340	1,20	14		
KCK-1(1)	120	1,10	36		
KCK-1(2)	70	0,88	50		
MCA-2500	13	0,60	240		

труктурина характаристики силикагалай

На рис. 1 приведена зависимость адсорбции цитохрома С на гидроксилированных силикагелях (в расчете на 1 г силикагеля) от их удельной поверхности. Адсорбцию проводили из 2%-го изопропанола в 0,02 М фосфатном буфере с рН 7,0. Максимум адсорбции наблюдается на силикагелях с удельной поверхностью 340 и 600 м²/г и средним диаметром пор 14 и 5 нм соответственно (рис. 1, кривая 1). Очевидно, что максимальная адсорбция происходит на гидроксилированных силикагелях с размером пор примерно в 1,5-3 раза превышающим гидродинамический размер глобул белка. Введение электролита (хлористого натрия) до концентрации 1 моль/л приводит к частичной десорбции белка (рис. 1, кривая 2). Причина десорбции заключается, вероятно, в конкуренции ионов натрия с положительными зарядами глобул белка за сорб-

ционные места – отрицательно заряженные силанольные

ионов железа), водой (до исчезновения ионов хлора) и высушивали при 180° в течение 6 ч. Для получения II серии образцов силикагели модифицировали триметилхлорсиланом по методике [6]. Для определения адсорбции к навескам силикагелей добавляли по 100 мкл изопропанола, так как триметилсилилированные образцы не смачиваются водой, а затем по 5 мл растворов белка в 0,02 М фосфатном буфере. В результате концентрация изопропанола в растворе составила 2%. Пробирки периодически встряхивали до установления равновесия. Для выявления роли электролита в адсорбции белка в те же пробирки добавляли по 1 мл 6 М хлористого натрия, вследствие чего концентрация последнего в растворе составила 1 моль/л. Для измерения кинетики адсорбции периодически проводили определение адсорбции при непрерывном перемешивании в течение 2 ч. Адсорбцию рассчитывали по изменению оптической плотности растворов белка при длине волны 400 или 420 нм. Для изучения влияния электролита и рН раствора на адсорбцию белка была измерена адсорбция из 2%-го изопропанола в 0,02 М фосфатных буферных растворах с рН от 2,0 до 10,4. В те же растворы после установления равновесия добавляли хлористый натрий до установления конечной концентрации 1 моль/л.

Результаты и обсуждение

Рис. 1. Зависимость адсорбции А (мг/г) цитохрома C от удельной поверхности S (м²/г) гидроксилированных силикагелей: I – из раствора 2%-го изопропанола в 0,02 М фосфатном буфере с рН 7,0; 2 – из того же раствора, содержащего 1 моль/л хлористого натрия (исходные концентрации белка 0,2 мг/мл,

Рис. 2. Зависимость адсорбции А (мг/г) цитохрома С от удельной поверхности S (м²/г) триметилсилилированных силикагелей (условия адсорбции и обозначения приведены в подписи к рис. 1)

группы поверхности. При этом положение максимума адсорбции сдвигается в область еще более узких пор. Средние диаметры пор этих силикагелей составляют 5 и 2,5 нм, удельные поверхности – 600 и 800 м²/г соответственно. Вероятно, присутствие электролита сжимает ионные атмосферы вокруг глобул белка около заряженной поверхности силикагелей, что делает относительно более узкие поры доступными для проникновения молекул белка.

Несколько по-другому выглядит зависимость адсорбции от размера пор на гидрофобизированных силикагелях (рис. 2). В отсутствие хлористого натрия (рис. 2, кривая

1) максимальная адсорбция наблюдается на силикагелях со средним диаметром пор 36 и 14 нм и средней удельной поверхностью 120 и 340 м²/г соответственно. Размер пор этих силикагелей в 3-10 раз превышает размер глобул белка, в случае гидроксилированных силикагелей только в 1,5-3 раза. Причиной относительно меньшей доступности для адсорбции белка узких пор гидрофобизированных силикагелей по сравнению с гидроксилированными является, вероятно, различие в характере взаимодействий белка, определяющих адсорбцию, с поверхностью. Если адсорбция цитохрома С на гидроксилированных силикагелях во многом зависит от дальнодейс твующих сил электростатического притяжения ионов, то адсорбция белка на триметилсилилированных силикагелях - от короткодействующих дисперсионных сил. Введение хлористого натрия в растворы белка приводит к увеличению адсорбции белка на гидрофобизированных силикагелях (рис. 2, кривая 2), что обусловлено усилением гидрофобных взаимодействий, происходящих вследствие увеличения концентрации электролита. При этом введение электролита в раствор белка не изменяет положение максимума адсорбции на гидрофобных силикагелях.

Кинетические кривые зависимости адсорбции цитохрома *C* на гидроксилированном и триметилсилилированном образцах силикагеля с диаметром пор 14 нм и удельной поверхностью 340 м²/г приведены на рис. 3. Видно, что на гидроксилированном образце адсорбционное равновесие устанавливается в несколько раз быстрее, чем на гидрофобизированном. Из таких кинетических зависимостей были рассчитаны величины адсорбции $a_{\text{макс}}$ и константы скорости адсорбции [7] для силикагелей с удельной поверхностью 74 и 340 м²/г. Эти данные приведены в табл. 2, откуда следует, что равновесные величины адсорбции $a_{\text{макс}}$ на гидрофобизированных образцах заметно больше, чем на гидроксилированных, а константы скорости адсорбции *k* примерно в 2 и 4 раза меньше.

Зависимость адсорбции цитохрома C от pH раствора на гидроксилированном силикагеле с удельной поверхностью 74 м²/г в интервале pH от 2 до 10,4 представлена на рис. 4. При относительно небольшой ионной силе растворов (в 2%-м изопропаноле из 0,02 M буфера) наблюдается четко выраженный максимум адсорбции при pH 8,6, что примерно на одну единицу pH ниже, чем изоэлектрическая точка цитохрома pI 9,7 (рис. 4, кривая *I*). Эт и данные хорошо согласуются с известным фактом, что максимум адсорбции белков находится обычно вблизи их

Таблица 2

Адсорбция *а*_{макс}, и константы скорости адсорбции *k*, мг⁻¹·л·мин⁻¹ на силикагелях КСК-1 (74 м²/г) и КСК-2 (340 м² /г)

Образцы	КСК-1		КСК-2	
	амакс	к	a _{makc}	к
Гидроксилированный	92	207	133	313
Гидрофобизированный	119	93	147	76

Рис. 3. Кинетика адсорбции цитохрома С на силикагеле КСК-2 (340 м²/г): 1 – гидроксилированном, 2 – триметилсилилированном. Адсорбция из 2%-го изопропанола в 0,02 М фосфатном буфере с pH 7,0. Исходные концентрации 0,06 мг/мл, навески 2 мг, объем раствора 5 мл

Рис. 4. Зависимость адсорбции А (мг/г) цитохрома *С* на гидроксилированном силикагеле (74 м²/г) от рН растворов: *1* – из 2%-го изопропанола в 0,02 М фосфатном буфере; 2 – из тех же растворов, содержащих 1 моль/л хлористого натрия (исходные концентрации 0,06 мг/мл, навески 2 мг, объем раствора 5 мл)

СПИСОК ЛИТЕРАТУРЫ

- 1. Полторак О.М., Пряхин А.Н., Чухрай Е.С. // Вестн. Моск. ун-та. Сер. 2. Химия. 1977. **18.** С. 125.
- Коликов В.М., Мчедлишвили Б.В. // Хроматография биополимеров на макропористых кремнеземах. Л., 1986.
- Хохлова Т.Д., Никитин Ю.С., Ворошилова О.И. // Журн. ВХО им. Д.И. Менделеева. 1989. 39. С. 363.
- 4. Айлер Р. Химия кремнезема. М., 1982.
- Экспериментальные методы в адсорбции и хроматографии. М., 1990.

Рис. 5. Зависимость адсороции А (мг/г) цитохрома С на триметилсилилированном силикагеле (74 м²/г) от pH растворов (условия адсорбции и обозначения приведены в подписи к рис. 4)

изоэлектрических точек [8, 9]. Это обусловлено проявлением вклада в адсорбцию гидрофобных взаимодействий. Небольшой сдвиг положения этого максимума в область значений pH, немного более низких, чем значения pI свидетельствует о проявлении при этом электростатических взаимодействий положительно заряженных глобул белка с отрицательно заряженной при pH 8,6 поверхностью силикагеля. Адсорбция довольно резко падает при уменьшении pH раствора. Введение хлористого натрия в раствор до установления концентрации 1 моль/л приводит к частичной десорбции цитохрома C при любых значениях pH растворов (рис. 4, кривая 2).

В растворах с малой ионной силой (при pH от 3,0 до 10,4) на триметилсилилированном силикагеле наблюдается высокая степень адсорбции белка, мало зависящей от pH (рис. 5, кривая 1). Только при pH 2,0 происходит значительное уменьшение адсорбции. При значениях pH от 2,0 до 7,0 введение хлористого натрия в раствор немного усиливает адсорбцию (рис. 5, кривая 2). При относительно высоких значениях pH (8,6 и 10,4) введение электролита заметно уменьшает адсорбцию. Причина может заключаться в разрушении модифицирующего триметилсилильного покрытия при высоких pH из-за большой растворимости кремнезема [4]. Полученные данные позволяют оптимизировать химию и геометрию поверхности силикагелей, а также условия их применения в адсорбции белка.

- Лисичкин Г.В., Кудрявцев Г.В., Сердан А.А. и др. Модифицированные кремнеземы в сорбции, катализе и хроматографии. М., 1986.
- Полторак О.М., Чухрай Е.С., Мардалейшвили М.Н. и др. // Вестн. Моск. ун-та. Сер. 2. Химия. 1987. 28. С. 230.
- Norde W., MacRitchie F., Novika G., Lyklema J. // J. Colloid Interface Sci. 1986. 112. P. 447.
- 9. Любинский Г.В. // Укр. биохим. журн. 1984. **56.** №4. С. 390.