УДК 541.44+546.668.

ПРЕВРАЩЕНИЯ В СИСТЕМАХ ГИДРИД ИТТЕРБИЯ – ГЕРМАНИЙ И ИТТЕРБИЙ–ГЕРМАНИЙ В УСЛОВИЯХ ВЫСОКИХ КВАЗИГИДРОСТАТИЧЕСКИХ ДАВЛЕНИЙ

В.Н. Вербецкий, Э.А. Мовлаев, Ю.А. Великодный

(кафедра химии и физики высоких давлений; e-mail verbetsky@hydride.chem.msu.ru)

Изучены превращения, протекающие в системах YbH₃–Ge и Yb–Ge в условиях высоких квазигидростатических давлений при $500-900^{\circ}$. Установлено образование нового соединения YbGe, кристаллизующегося в ГЦК решетке с периодом a=5690 Å. Сделано предположение об образовании в системе Yb–Ge в условиях высоких давлений еще ряда новых соединений.

Взаимодействие водорода с интерметаллическими соединениями (ИМС), в состав которых входят редкоземельные металлы, железо, кобальт и никель, достаточно хорошо изучено. Однако крайне мало сведений имеется о гетерометаллических гидридах с Si, Ge, Sn. Наиболее изученными в настоящее время являются гидриды, образующиеся при взаимодействии водорода с ИМС состава R_sSi_3 и R_sGe_3 [1, 2].

В данной работе предпринята попытка синтеза новых гетерометаллических гидридов иттербия и германия в условиях высоких квазигидростатических давлений.

Экспериментальная часть

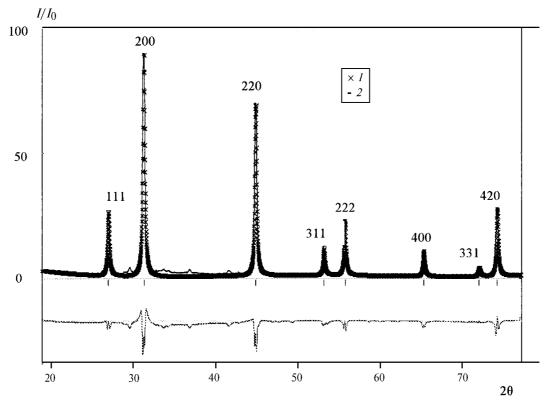
Гидрид иттербия состава $YbH_{2,9}$ получен взаимодействием металлического иттербия и водорода при температуре 400° и давлении водорода 3–4 МПа.

После окончания реакции автоклав с образцом медленно охлаждали до комнатной температуры. Использованный германий имел чистоту 99,96%.

Реакционную смесь готовили смешением порошков в агатовой ступке, прессовали в цилиндрические таблетки и помещали в камеру высокого давления.

Методика синтеза при высоких давлениях реализована в аппарате типа «наковальни Бриджмена» с камерой типа «чечевица» (рабочий объем $\sim 1~{\rm cm}^3$) изготовленной из литографского камня. В качестве материала, изолирующего реакционную смесь от графитового нагревателя, заполняющего свободное пространство камеры и передающего давление на образец, использовали хлорид натрия. Съемку образцов проводили на дифрактометре ДРОН-2 ($\lambda~{\rm Cu}K_\alpha$), STADI/P и в камере FR-552.

Результаты и их обсуждение


Условия проведения эксперимента и фазовый состав образцов после обработки реакционной смеси в условиях высоких давлений представлены в табл. 1.

Как видно из полученных данных, чистый гидрид иттербия в этих условиях стабилен и никаких превращений не претерпевает.

Во всех образцах, обработанных в условиях высоких давлений, при соотношении исходных компонентов YbH_{2,9}:Ge от 2:1 до 8:1, по данным P Φ A, образуется новое соединение (структурный тип NaCl), обозначенное в табл. 1 как X- Φ аза. При этом количество X- Φ азы

Таблица 1 Условия синтеза и фазовый состав продуктов реакции

Исходный состав, YbH _{2.9} :Ge	Давление, кбар	Температура, °С	Время,	Фазовый состав продуктов реакции	
YbH _{2.9}	50	800	4	YbH _{2.9}	
				Yb_2O_3	
8:1	60	900	4	YbH _{2.9} , X-фаза(мало)	
5:1	60	900	3	Yb_2O_3	
				YbH _{2.9} , X-фаза(мало)	
5:1	50	500	3	YbH _{2.9} , X-фаза(мало)	
3:1	60	800	2	Yb_2O_3	
				YbH _{2.9} , X-фаза(много) Ge	
2:1	60	900	2	Yb_2O_3	
				YbH _{2.9} , X-фаза(много) Ge	

Сравнение расчитанной (1) и экспериментальной (2) рентгенограмм YbGe

в образцах растет с увеличением содержания германия в исходной реакционной смеси. Так как процесс в условиях квазигидростатики является неравновесным, то в продуктах реакции присутствуют и исходные компоненты — гидрид иттербия и германий.

Исследование термического разложения образцов, полученных в условиях высоких давлений, показало, что при нагревании в вакууме до 800° происходит частичная десорбция водорода, связанная, по данным РФА, с разложением тригидрида иттербия. Рентгенографические характеристики X-фазы в этих условиях не меняются. Такая высокая термическая устойчивость X-фазы вызвала предположение об отсутствии в ней водорода.

По данным [3], при атмосферном давлении в системе Yb-Ge образуются три ИМС состава Yb_3Ge_5 , $Yb_{11}Ge_{10}$ и Yb_5Ge_3 , кристаллическая структура которых отлична от структуры X-фазы. С целью проверки нашего предположения были приготовлены смеси состава Yb:Ge = 1:3,1:2 и 1:1,67, которые выдержали в аналогичном режиме в условиях высоких давлений. По данным РФА, во всех этих образцах была синтезирована X-фаза. Наибольшее количество ее получено в образце состава Yb:Ge = 1:1,67. Кроме X-фазы в нем присутствуют малые количества NaCl (изолирующий материал) и Yb_2O_3 . Результаты индицирования линий X-фазы этого образца представлены в табл. 2.

Наше предположение о том, что X-фаза имеет состав YbGe и кристаллизуется в структурном типе NaCl, подтверждается хорошим совпадением теоретической и экспериментальной рентгенограмм (рисунок). YbGe кристаллизуется в ГЦК-сингонии с периодом a=5,690(1) Å и объемом элементарной ячейки V=184,3(1) Å 3 .

Таким образом, полученные данные свидетельствуют о том, что в условиях высоких давлений нами синтезировано новое соединение YbGe со структурой типа NaCl. По-видимому, энтальпия образования этого соединения при высоких давлениях достаточно высока, так как синтез YbGe в системе гидрид иттербий–германий может быть описан следующей схемой:

$$YbH_3 + Ge \rightarrow YbGe + 3/2H_2$$
.

Интересно отметить, что в условиях высоких давлений был синтезирован интерметаллид со структурой, совершенно не характерной для ИМС редкоземельных метал-

Таблица 2 Индицирование рентгенограммы

d, -	20	I/I_0	h k l
3,286	27,12	23,67	1 1 1
2,998	29,78	5,94	Yb_2O_3
2,845	31,41	100,00	2 0 0
2,595	34,53	2,68	Yb_2O_3
2,012	45,02	71,63	2 2 0
1,992	45,49	8,14	NaCl
1,837	49,59	2,01	Yb_2O_3
1,716	53,34	12,01	3 1 1
1,643	55,93	22,88	2 2 2
1,566	58,92	1,89	Yb_2O_3

лов с переходными металлами. Структура NaCl наблюдается только для соединений P3M с неметаллическими элементами Va и VIa групп, причем образование этих соединений обусловлено частично ионным характером связи между элементами.

Необходимо также отметить, что в ряде опытов в образцах с большим содержанием как германия, так и ит-

тербия наблюдалось присутствие еще одной фазы со структурой типа $\mathrm{AuCu_3}$. Соединения с этой структурой присутствуют в системах P3M–Sn и P3M–Pb. Особенности поведения систем $\mathrm{YbH_3}$ –Ge и Yb–Ge в условиях высоких давлений свидетельствуют о сложном характере происходящих в них фазовых превращений, что требует продолжения исследований в этом направлении.

Работа выполнена при поддержке РФФИ (грант 99-03-32508).

СПИСОК ЛИТЕРАТУРЫ.

- 1. Bruer B.A., Clark N.J., McColm I.J. // J. Les.-Com. met. 1985.
- McColm I.J., Ward J.M. // J. Alloys and Compounds. 1992.
 178. P. 91.
- 3. Диаграмма состояния двойных металлических систем. Справочник. Под общей ред. академика РАН Н.П. Лякишева. Т 2. С. 822. М., 1997.

Поступила в редакцию 06.12.01