УДК 541.128.13: 547.596/597

# КАТАЛИТИЧЕСКИЕ ПРЕВРАЩЕНИЯ ЛИНАЛООЛА И ЛИНАЛИЛАЦЕТАТА НА ШИРОКОПОРИСТЫХ ЦЕОЛИТАХ И MCM-41

Ц.М. Рамишвили\*, В.В. Ющенко, М.К. Чарквиани\*

(кафедра физической химии)

Показано, что при 373–453 К на H- и деалюминированных формах цеолитов FAU(Y), BEA, MOR, OFF и мезопористом MCM-41 линалоол и линалилацетат (ЛАЦ) дегидратируются, конденсируются и изомеризуются. Выходы продуктов реакции изомеризации линалоола – гераниола и α- и β-терпинеолов низки; использование ЛАЦ благоприятствует протеканию изомеризации; продукты аллильной перегруппировки ЛАЦ–геранилацетат (ГАЦ) и терпинилацетат (ТАЦ) образуются с наибольшими выходами на DeAlBEA(277). В результате дегидратации образуются различные изомерные C<sub>10</sub>H<sub>16</sub> терпеновые углеводороды.

#### Введение

Терпеновые первичные спирты гераниол (3,7-диметил-транс-2,6-октадиен-1-ол) и нерол (3,7-диметил-цис-2,6-окта-ди-ен-1-ол) – ценные душистые вещества, используемые для приготовления парфюмерных композиций, отдушек для мыла и синтетических моющих средств, для получения геранилацетата и других душистых сложных эфиров, промежуточных реагентов для органического синтеза [1], цитронеллола и цитраля [2]. В мировом производстве душистых веществ доля гераниола в настоящее время составляет 10% (10 000 т/год) [3].

Для выделения гераниола и нерола, содержащихся в виде эфиров в пальмарозовом (70–89%), гераниевом и цитронелловом (30%) маслах [3], используют гидролиз с последующей ректификацией. В промышленности для получения гераниола и нерола используют многостадийные процессы синтеза из изопрена [1] и β-пинена [4], а также гомогенную каталитическую изомеризацию третичного терпенового спирта линалоола (3,7-диметил-1,6-окта-ди-ен-3-ол) или его сложных эфиров (ацетата или бората) [5–13]. Линалоол получают из возобновляемых природных источников: эфирного масла кориандра [14] (содержит до 80% линалоола) либо из α-пинена, выделяемого из продукта переработки древесины – скипидара [15].

Изомеризацию линалоола путем аллильной перегруппировки в гераниол и нерол проводят в присутствии кислот ( $H_2SO_4$ ,  $H_3PO_4$ , смеси  $CH_3COOH$  и его ангидрида) [5, 6], газообразных HCl и HBr [7] (процесс ведут при 25–135°С, выходы гераниола и нерола составляют 40-55%), в присутствии оксометаллических производных (эфиров) и аммониевых солей кислот некоторых переходных металлов (V, Mo, W, Re, Nb) [8-10] и особенно производных ортованадиевой кислоты, в том числе метаванадата аммония [9]. Используют также алкилортованадаты типа (RO)<sub>2</sub>V=O [8] в чистом виде или с добавками гидроксида тетрабутиламмония [15, 16]. На этих катализаторах по сравнению с кислотными конверсия линалоола и селективность по первичным спиртам (гераниолу и неролу) возрастают; например на триизобутилортованадате (200°С, N<sub>2</sub>, 3 ч) – до 42 и 96% [10], а на катализаторах, предложенных в [15, 16] - до 40 и 95-99% (140-220°С) соответственно. К недостаткам известных к сегодняшнему дню катализаторов изомеризации линаноола относятся их экологическая небезопасность, трудность отделения от продуктов реакции, их нерегенерируемость и сложность приготовления.

В представленной работе исследованы превращения линалоола и линалилацетата с целью их изомеризации на гетерогенных катализаторах (цеолитных и мезопористых молекулярных ситах), обладающих кислотными свойствами и лишенных недостатков вышеуказанных гомогенных катализаторов изомеризации линалоола. К настоящему времени в научной и патентной литературе нет данных по использованию микрои мезопористых молекулярных сит в изомеризации линалоола в гераниол и нерол [14].

### Экспериментальная часть

*Катализаторы.* Для приготовления катализаторов были использованы следующие исходные формы ши-

<sup>\*</sup>Инситут физической и органической химии им. П.Г. Меликишвили, Тбилиси (e-mail: rtsiuri@yahoo.com).

рокопористых цеолитов и мезопористого алюмосиликата (AC) типа MCM-41 (табл. 1): NH<sub>4</sub>BEA(Si/Al=42) и NaMOR(Si/Al=5), (*Zeolyst*); NaFAU(Y) (Si/Al=1,95) и коллоидный TMA-OFF (Si/Al=3) были синтезированы из природного клиноптилолита месторождения "Хекордзула" (Грузия) по методике [17]. По данным электронной микроскопии (сканирующий ЭМ, увеличение в 10 000 раз) в коллоидном ТМА-оффретите кристаллы имеют субмикронные размеры и одна из трех размерностей составляет 100 нм.

Мезопористый алюминиевый МСМ(Al)-41 (Si/Al = 42,5) и кремнистый МСМ(Si)-41 получены путем гидротермального синтеза при 373 К в течение 24 ч соответственно из алюмосиликатного и силикатного гидрогелей в присутствии бромида цетилтриметиламмония [18]. ТМА-формы предварительно прокаливали при 813 К в течение 3 ч в потоке инертного газа, а затем - на воздухе. Мезопористый алюминиевый MCM(A1)-41 (Si/Al=25) с диаметром пор, равным 2,8 нм, получен при 373 К из глубоковыщелаченного сильными кислотами клиноптилолита (месторождение "Хекордзула") в присутствии темплата бромида децилтриметиламмония. Испытанные кислотные Н-формы цеолитов типа FAU(Y), OFF, BEA и мезопористого АС МСМ(Al)-41 получали через аммонийные модифицикации разложением их в потоке осушенного воздуха при 773 К.

В настоящей работе исследованы также глубокодеалюминированные формы широкопористых цеолитов DeAlBEA (Si/Al=277) и DeAlMOR (Si/Al=97). Высококремнистые DeAlBEA и DeAlMOR получали кипячением исходных H-форм с 2 М раствором щавелевой кислоты. Для HBEA и DeAlBEA величины общей кислотности, определенные методом ТПД NH<sub>3</sub>, составляли соответственно 378 и 365 мкмоль/г.

Методика проведения каталитических опытов и анализ продуктов. Каталитические превращения линалоола и линалилацетата проводили при 373–453 К с 0,1–0,3 г катализатора и с 3 мл субстрата статическим методом либо в 4-горловой колбе (с обратным холодильником, магнитной мешалкой, термометром и коленом для ввода реагента и инертных газов (Ar, He), либо в специально изготовленном титановом автоклаве малого объема (20 мл).

Продукты реакции отделяли от катализатора центрифугированием и идентифицировали методом хромато-масс-спектрометрии на приборе "VG-7070" (кварцевая капиллярная колонка (25 м × 0,2 мм) с фазой SE-30). Жидкие продукты реакции анализировали на хроматографе "ЛХМ-8МД" (модель 2), с катарометром на стальной колонке (5 м × 3 мм) с 20% Твин-85 на Хроматоне-N-AW, отмытом кислотой. Условия анализа: газ-носитель – гелий, скорость газаносителя 40 мл/мин, температура испарителя 443 К,

Таблица 1

| Катализаторы  | Мольное<br>отношение<br>Si/Al | $S_{ m E 	ext{3}T,} \atop { m M}^2/\Gamma$ | <i>V</i> ,<br>см <sup>3</sup> /г | V <sub>микр</sub> /V | Состав элементарной ячейки                                                                       |
|---------------|-------------------------------|--------------------------------------------|----------------------------------|----------------------|--------------------------------------------------------------------------------------------------|
| NaFAU(Y)      | 1,95                          | -                                          | -                                | -                    | $Na_{43,94} \cdot Ca_{2,59} \cdot Al_{66,37} \cdot Si_{129,76} \cdot O_{384} \cdot 196,\!49H_2O$ |
| H FAU(Y)      | 1,95                          |                                            |                                  |                      |                                                                                                  |
| NH4BEA        | 42,0                          | 557                                        | 0,678                            | 0,228                | $(NH_4)_{1,44} \cdot Na_{0,06} \cdot Al_{1,48} \cdot Si_{62,5} \cdot O_{128} \cdot 28H_2O$       |
| DeAlBEA       | 277,0                         | 565                                        | 0,335                            | 0,510                | $H_{0,23}{\cdot}Al_{0,23}{\cdot}Si_{63,77}{\cdot}O_{128}{\cdot}9H_2O$                            |
| NaMOR         | 5,0                           | -                                          | -                                | -                    | -                                                                                                |
| DeAlMOR       | 97,0                          | -                                          | -                                | -                    | -                                                                                                |
| TMA-OFF       | 3,0                           | -                                          | _                                | -                    | 0,48K <sub>2</sub> O·0,33Na <sub>2</sub> O·0,16(TMA) <sub>2</sub> O·0,15CaO                      |
| HOFF          | 3,0                           | _                                          | _                                | -                    | 0,09MgO·Al <sub>2</sub> O <sub>3</sub> ·5,94SiO <sub>2</sub> ·3,91H <sub>2</sub> O               |
| MCM(Al)-41    | 42,5                          | 1048                                       | _                                | _                    | $0,04Na_2O\cdot 0,96H_2O\cdot Al_2O_3\cdot 85SiO_2\cdot 30H_2O$                                  |
| MCM(Si)-41*   | -                             | 1222                                       | _                                | -                    | SiO <sub>2</sub> ·0,07H <sub>2</sub> O                                                           |
| MCM(Al)-41**  | 25,0                          | -                                          | _                                | -                    | -                                                                                                |
| HMCM(Al)-1*** | 25,0                          | -                                          | 0                                | -                    | _                                                                                                |

Физико-химические характеристики исследованных катализаторов

*Примечание*. \* Размер пор 2,5 нм; \*\* размер пор 2,8 нм; \*\*\* размер кристаллитов 100 нм.

анализ проводили в программном режиме, сначала повышали температуру от 323 до 413 К (8 град/мин), затем 20 мин - при 413 К. Хроматографические пики были идентифицированы по времени выхода индивидуальных компонентов; последовательность выхода продуктов реакции следующая: α-пинен, камфен, мирцен, α-терпинен, лимонен, оцимен, γ-терпинен, линалоол, камфора, линалилацетат, β-терпинеол, α-терпинеол, терпинилацетат, нерол, гераниол, геранилацетат. Количественный хроматографический анализ продуктов реакции проводили методом стандартной добавки [19, 20]. В качестве стандарта применяли исходное вещество - линалоол или линалилацетат. По содержанию продуктов реакции  $(C_i)$  определяли их выходы (В). Содержание продуктов конденсации (C), не регистрирумых хроматографически, определяли по соотношению:

$$C = 100 - \sum C_i$$

Степень превращения исходных веществ (Y, мас.%) и селективность по продуктам реакции (S, %) рассчитывали соответственно по соотношениям:

$$Y = Q_1 - Q_2 / Q_1 \cdot 100\%$$
  
S = B.100% / Y,

где  $Q_1$  и  $Q_2$  – площади пиков исходного вещества (линалоола или линалилацетата), полученные в одинаковых условиях хроматографирования при калибровке и при хроматографическом анализе продуктов реакции.

**Реактивы.** Использовали рацемическую смесь линалоола и линалилацетата ("*Aldrich*", 97–98% чистоты). В отдельных случаях применяли *d*-линалоол, выделенный ректификацией кориандрового масла ( $T = 50-60^{\circ}$ С, P = 3 мм), содержащий 88,1% линалоола.

### Результаты и их обсуждение

Состав продуктов превращения линалоола и линалилацетата на исследованых кислотных формах цеолитов и МСМ-41 (табл. 2, 3) указывает на многомаршрутность процессов, основные из которых представлены на схемах 1 и 2. Продукты превращения линалоола и линалилацетата на исследованых цеолитах и МСМ(Al)-41 – жидкости с желтоватым оттенком и характерным запахом.

Превращение линалоола. Линалоол на испытанных цеолитах и МСМ-41 в основном дегидратируется и циклизуется в терпеновые ациклические и моноциклические углеводороды (УВ): мирцен, оцимен, α- и γ-терпинены, лимонен с выходами по сумме 18–81% при конверсиях, равных 21–100%; линалоол также образует продукты конденсации с наименьшими выхо-

Данные табл. 2 показывают, что изомеризация линалоола в гераниол происходит в незначительной мере – его выходы на цеолитах HFAU(Y), HBEA и DeAIMOR составляют лишь 1-3%. Незначительна также селективность по изомеризации в α-и β-терпинеолы. Выходы их равны 1-10%, включая HMCM(Al)-41 (Si/Al=25), в отличие от образца MCM(Al)-41 (Si/Al=42,5), содержащего меньше кислотных центров (на MCM(Al)-41, не происходит изомеризации ни в гераниол, ни в α- и β-терпинеолы). Молекула линалоола имеет большие размеры (9х~5,8), и при его превращении на цеолитах и МСМ(Al)-41 внутрикристаллическое пространство должно быть доступно только в случае мезопористого МСМ-41 ввиду больших размеров его пор (2,8 нм). Действительно, при 413 К изомеризация линалоола на MCM(Al)-41 и НМСМ(Al)-41 протекает с высокими степенями превращения (100 и 80% соответственно).

В тех же условиях в присутствии MCM(Si)-41, катализатора с очень слабыми кислотными центрами, линалоол не превращается, что указывает на необходимость участия более сильных кислотных центров в этом процессе, последнее подтверждается также отсутствием реакции на DeAlBEA, предварительно обработанном раствором KOH.

На цеолитных катализаторах с размерами входных окон в каналы (MOR, BEA) или полости (FAU(Y)) от 6,5 до 7,7 Å [21] изомеризация линалоола также протекает с высокой степенью превращения (43-100%). Можно предположить, что происходит превращение линалоола на кислотных центрах внешней поверхности кристаллитов, однако не исключается участие активных центров и внутрикристаллического пространства цеолитов при определенной ориентации молекул линалоола, способствующей взаимодействию его ОНгрупп с активными центрами цеолита. На это указывают различия в селективности по продуктам дегидратации линалоола на разных типах исследованных цеолитов. В частности, на HFAU(Y) имеет место наибольшая селективность по оцимену (48,6%), а на DeAlMOR и H-формах BEA и OFF – по лимонену (44,7; 54,2 и 58,7% соответственно).

С деалюминированием BEA, т.е. с увеличением мольного отношения Si/Al от 42 до 277 и соответственно с уменьшением его кислотности с изменением силы кислотных центров [22], выход продуктов дегидратации–циклизации (выход УВ) уменьшается от 80,7 до 17,9%. При этом снижается и конверсия

### Схема 1



линалоола от 100 до 44%, а селективность по продуктам изомеризации (α-, β-терпинеолам, гераниолу) существенно не меняется (табл. 2).

На HMCM(Al)-41, HFAU(Y) и DeAlMOR наблюдается также образование кетона терпенового ряда – камфоры ( $C_{10}H_{16}O$ ) с наибольшим выходом на HMCM(Al)-41, равным 10,2% (табл. 2).

Превращение линалилацетата. Для предотвращения влияния реакции дегидратации исследовали каталитические свойства цеолитов и МСМ-41 в превращении линалилацетата с целью получения продукта изомеризации – геранилацетата. В отличие от линалоола, в линалилацетате ОН-группа защищена. Данные табл. 2, 3 показывают, что в сравнимых условиях конверсия линалилацетата (ЛАЦ) и выход продуктов конденсации выше, чем при превращении линалоола, при этом селективность образования продуктов дегидратации и циклизации УВ терпенового ряда значительно уменьшается почти на всех типах изученных катализаторов. На них селективность изомеризации по терпинилацетатам (ТАЦ) и геранилацетатам (ГАЦ) выше при конверсии ЛАЦ в сравнении с селективностью изомеризации линалоола (по гераниолу, неролу, α- и β-терпинеолам); при 373–380 и 413 К селективность по ТАЦ и ГАЦ составляет соответственно 2,3-14,3 и 4,7-39,5% (табл. 3). Наибольший выход ГАЦ имеется на DeAlBEA и коллоидном HOFF. При 413 К выход ГАЦ составляет 17,4–33,1% на DeAlBEA и 19,8% на HOFF при 373 К (табл. 3).

Присутствие УВ терпенового ряда (мирцена, оцимена, α- и γ-терпинена, лимонена) в продуктах превращения ЛАЦ показывает, что на изученных цеолитах и МСМ-41 ЛАЦ частично разлагается на линалоол и уксусную кислоту. Как уже отмечалось выше, в присутствии МСМ(Si)-41 при 413 К линалоол не





| ца 2  |                 |                                           | Ar                  |               |              |         |        |        |                    |
|-------|-----------------|-------------------------------------------|---------------------|---------------|--------------|---------|--------|--------|--------------------|
| Габли |                 | IR (97)                                   | 413,                | 0,2           | 81,1         | 19,5    | I      |        | 18.9               |
| Г     | ции 2 ч         | DeAIMO                                    | 380, Ar             | 0,2           | 42,7         | 3,5     | I      | Ι      | 27.4               |
|       | ость реакі      |                                           | 413, B              | 0,13          | 100          | I       | I      | 10,0   | 31.6               |
|       | лжительн        | HOFF (3,0)                                | 373, B              | 0,10          | 85,7         | I       | I      | 3,1    | I                  |
|       | га 3 мл; продо  | DeAIBEA<br>(277)                          | 413, Ar             | 0,2           | 44,8         | 12,9    | I      | 11,2   |                    |
|       | м субстра       |                                           | 413, Ar             | 0,2           | 100          | 4,4     | 1,2    | 15,6   | I                  |
|       | оола. Объе      | HBEA(42)                                  | 380, Ar             | 0,2           | 89,6         | 2,8     | 1      | 15,6   |                    |
|       | ащении линал    | HFAU(Y)<br>(1,95)* ●                      | 413, He             | 0,2           | 48,6         | 1,4     | I      | I      | 11,9               |
|       | 1CM-41 в превр  | MCM(AI)-41<br>(42,5)**                    | 413, B              | 0,2           | 100          | 17,3    | 1,5    | 22,0   | 1                  |
|       | ть цеолитов и Л | HMCM(AI)-41<br>(25)* •                    | 413, He             | 0,2           | 79,8         | 12,1    | 1      | 1      | 3,0                |
|       | ская активнос   | MCM(Si)-41                                | 413, Ar             | 0,1–0,3       | 0,0          | I       | 1      | 1      | I                  |
|       | Каталитиче      | Катализаторы<br>(атомное отношение Si/AI) | <i>T</i> (K), среда | Масса кат., г | Конверсия, % | α-Пинен | Камфен | Мирцен | <i>α</i> -Терпинен |

| 26,8        |  |
|-------------|--|
| 30,8        |  |
| 79,1        |  |
| 55,8        |  |
| 7,9         |  |
| 80,7 1      |  |
| 63,5        |  |
| 29,4        |  |
| 43,5        |  |
| 37,8        |  |
| I           |  |
| Зыход УВ, % |  |

27,6

20,9

22,9 65,0

40,8 40,0

8,9

24,9 60,5

35,8

80,7

16,4 70,9

43,5

18,5 47,5

I

Селективность по сумме УВ

Продукты конденсации

1 1

1, 8

c.i. 2,5

Т

5

1 1

Гераниол

Нерол

<u>5</u>

3,1

6,9 9,6

T

T

7,9

5,1

- 6,3

2,8

6,3

I

Ι

5

1 1

9,2

I I

β-Терпинеол α-Терпинеол Т

T

- E2

1, 8

9,3 0,6 0,8

L

12,8

I

1 I I

Неидентифиц

Камфора

T

ү-Терпинен

Оцимен

L

5

3,8 4,3 8,2 8,2

Ι Ι

fi ci l

5 5

12,5

3,2

13,8

1,1

48,6

12,8

20,6 23,8

L

сī.

1,0

7,6

5,0

5 | |

33,1

72,1

79,1

## ВЕСТН. МОСК. УН-ТА. СЕР. 2. ХИМИЯ. 2007. Т. 48. № 4

*Примечания*. В – воздух; • Линалоол (88,1% чистоты); \*опыты проводили в колбе, а в остальных случаях – в автоклаве; УВ – мирцен, оцимен, α и γ – терпинены, лимонен; \*\*получен прокалкой ТМА-формы при 813 К.

| Ката                                      | алитическая а | ктивность це   | литов и MCN<br>продолжі | И-41 в превра<br>ательность ре | щении лин<br>закции 2 ч) | налилацет:<br>) | ата (объем | субстрата | 3 mit;   |           |          |
|-------------------------------------------|---------------|----------------|-------------------------|--------------------------------|--------------------------|-----------------|------------|-----------|----------|-----------|----------|
| Катализаторы<br>(атомное отношение Si/AI) |               | IMCM(AI)-41(25 | *(                      | HFAU(Y)                        | (1,95)*                  | DeAIBI          | EA (277)   | OFI       | F(3,0)** | Ц         | OFF(3,0) |
| T (K), cpe.za                             | 413, B        | 453, Ar •      | 413, He                 | 380, CO <sub>2</sub>           | 413, He                  | 413, B          | 413, B     | 453, Ar • | 373, B   | 373,<br>B | 413, B   |
| Масса кат., г                             | 0,20          | 0,20           | 0,20                    | 0,20                           | 0,20                     | 0,13            | 0,20       | 0,10      | 0,10     | 0,10      | 0,10     |
| Конверсия, %                              | 100           | 100            | 90,2                    | 34,9                           | 55,7                     | 44,1            | 96,4       | 100       | 21,2     | 89,9      | 94,7     |
| α-Пинен                                   | Ι             | Ι              | 0,8                     | I                              | I                        | I               | I          | I         | I        | I         | I        |
| Мирцен                                    | 5,6           | Ι              | I                       | 13,8                           | 8,8                      | 9,1             | 7,2        | 12,9      | 4,7      | 9,7       | 11,4     |
| αТерпинен                                 | 29,6          | 6,7            | 8,3                     | I                              | Ι                        | I               | I          | Ι         | 12,3     | 44,3      | 50,3     |
| Лимонен                                   | Ι             | 18,1           | I                       | 36,4                           | 28,9                     | 30,6            | 25,5       | 16,7      | I        | I         | 9,1      |
| Оцимен                                    | 3,7           | 2,9            | 25,0                    | I                              | Ι                        | 3,6             | 1,6        | 3,3       | Ι        | I         | 8,1      |
| λ -терпинен                               | 1,9           | 6,7            | 2,9                     | I                              | I                        | I               | I          | I         | сл,      | сл,       | 5,4      |
| Линалоол                                  | Ι             | I              | 0,2                     | I                              | I                        | сл,             | сл,        | сл,       | I        | I         | I        |
| Терпинилацетат                            | Ι             | 2,4            | 11,6                    | 2,3                            | 7,9                      | 14,3            | 11,3       | I         | Ι        | сп,       | сл,      |
| Геранилацетат                             | Ι             | 13,7           | 21,3                    | 12,6                           | 21,8                     | 39,5            | 34,3       | I         | 4,7      | 22,0      | сл,      |
| Продукты конденсации                      | 59,2          | 49,5           | 29,9                    | 34,9                           | 32,6                     | 2,9             | 20,1       | 67,1      | 78,3     | 24,0      | 15,7     |
| Селективность по сумме УВ                 | 40,8          | 34,4           | 37,0                    | 50,2                           | 37,7                     | 43,3            | 34,3       | 32,9      | 17,0     | 54,0      | 84,3     |
| <b>Выход УВ, %</b>                        | 40,8          | 34,4           | 33,3                    | 17,5                           | 21,0                     | 19,1            | 33,1       | 32,9      | 3,6      | 48,5      | 79,8     |
|                                           |               |                |                         |                                |                          |                 |            |           |          |           |          |

Примечание. • Продолжительность опытов 0,5 ч; остальные обозначения те же, что и в табл. 2.

228

Таблица 3

## ВЕСТН. МОСК. УН-ТА. СЕР. 2. ХИМИЯ. 2007. Т. 48. № 4

превращается, тогда как ЛАЦ на нем полностью разлагается с образованием УВ терпенового ряда и продуктов конденсации (табл. 3); это позволяет предположить активирующее влияние уксусной кислоты при превращении ЛАЦ на цеолитах и MCM-41.

На коллоидном HOFF при 373 и 413 К имеет место высокая селективность по α-терпинену, она составляет соответственно 44,3 и 50,3% при конверсиях, равных 90 и 95% (табл. 3).

### Заключение

Можно сделать вывод, что в жидкой фазе при 373–453 К на кислотных и деалюминированных фор-

### СПИСОК ЛИТЕРАТУРЫ

- 1. Братус И.Н. Химия душистых веществ. М., 1992.
- 2. *Kogami K., Kumanotani J.* // Bull. Chem. Soc. Japan. 1968. **41**. N 10. P. 2508.
- 3. Хейфиц Л.А., Дашунин В.М. Душистые вещества и другие продукты для парфюмерии. М., 1994.
- 4. Eur. Pat. 132544. 1984. C.A. 1985. 103. 22806 q.
- 5. Наметкин С.С., Федосеева А.И. Синтезы душистых веществ. М.;Л., 1939. С. 257.
- 6. Young W.G., Webb I.D. // J. Am. Chem. Soc. 1951. 73. N 2. P.780.
- 7. Назаров И.Н., Гусев Б.П., Гунар В.И. //Изв. АН СССР. ОХН. 1957. **10.** С. 1267.
- 8. *Chabardes P., Kuntz E., Varagnat J. //*Tetrahedron. 1977. **33**. N 14-H. P. 1775.
- 9. US Pat. 3925485. 1975. Кл. С07С 33/02. Эскпресс-информация. Промышленный органический синтез. 1976. № 28. С. 12.
- 10. US Pat. 4006193. 1977. Кл. С07С 33/02.
- 11. А.С. СССР.169420А1. 1991. Кл. С07С 33/02. Б.И. 1991. № 45. С. 91.
- 12. US Pat. 4254291 А.1981. Кл. С07С 33/02. РЖХим. 1981. 21Р435П.
- 13. A.C. Ceskoslovenska SR. 267946. 1990. Кл. С07С 29/56. РЖХим. 1991. 10Н10П.

мах цеолитов FAU(Y), BEA, OFF, MOR и мезопористого AC MCM-41 линалоол изомеризуется в гераниол и  $\alpha$ - и  $\beta$ -терпинеолы с низкими выходами, равными соответственно 1–3 и 1–10%; использование ацетилированного производного линалоола-линалилацетата позволяет избежать ряда побочных процессов; линалилацетат на тех же катализаторах изомеризуется в большей мере, чем линалоол, образуя геранил- и терпинилацетаты с наибольшими выходами при 413 К, равными соответственно 33,1 и 10,9% на DeAlBEA. Авторы выражают благодарность докт. хим. наук, проф. И.И. Ивановой и канд. хим. наук Е.Е. Князевой за предоставление образцов катализаторов.

- Monteiro J.L.F., Veloso C.O. // Topics in Catalysis. 2004. 27. N 1–4. P. 169.
- Ильина И.И., Максимчук Н.В., Семитколенов В.А. // РЖХим. 2004. 48. № 3. С. 38.
- 16. Semikolenov V.A., Ilina I.I., Maksimovskaya R.I. // J. Mol. Catal.A: Chemical. 2003. N 204–205. P. 201.
- Tsitsishvili G. V., Charkviani M.K. // Studies in Surface Science and Catalysis. V. 28. New Developments in Zeolite Science and Technology. Proc. 7<sup>th</sup> International Zeolite Conference. Tokyo, 1986. P. 161.
- Stucky G.D. // Studies in Surface Science and Catalysis.V.105A. Progress in Zeolite and Microporous Materials. Amsterdam, 1997. P. 321.
- 19. Вигдергауз М.С. Расчеты в газовой хроматографии. М., 1978. С. 165.
- 20. Столяров Б.В., Савинов И.М., Витенберг А.Г. Руководство к практическим работам по газовой хроматографии. Л., 1988. С. 231, 329.
- 21. *Baerlocher Ch., Meier W.M., Olson D.H.* Atlas of Zeolite Framework Types. Amsterdam, 2001.
- 22. Zhang J. Y., Zhou L.-P., Li X.-W. // Studies in Surface Science and Catalysis.V.135. Zeolites and Mesoporous Materials at the Dawn of the 21<sup>st</sup> Century / Eds. A.Galarneau, F.Di Renzo, F.Fajula, J.Vedrine. Amsterdam, 2001. P. 213, 11-P-22.

Поступила в редакцию 16.11.06

# CATALYTIC CONVERSIONS OF LINALOOL AND LINALYL ACETATE ON THE WIDE-PORE ZEOLITES AND MESOPOROUS MCM-41

### Ts.M. Ramishvili, V.V. Yushchenko, M.K. Charkviani

(Division of Physical Chemistry)

Dehydration, condensation and isomerization's reactions proceed by conversion of linalool and linalylacetate over H- and dealuminated forms of zeolites FAU(Y), BEA, MOR, OFF and mesoporous MCM-41 at 373–453 K. The yields of the linalool's isomerization reactions products – geraniol,  $\alpha$ - and  $\beta$ -terpineols were low. Use of linalyl acetate favours to isomerization reaction. Allilic rearrangement of linalyl acetate leads to geranyl- and terpinyl acetates with most selectivity over DeAIBEA(277). Various isomeric terpenic hydrocarbons  $C_{10}H_{16}$  arises as a result of dehydration reactions.