УДК 538.956.406:547.42

НОВЫЕ ПОДХОДЫ К АНАЛИЗУ РЕЛАКСАЦИОНЫХ ПРОЦЕССОВ В МНОГОАТОМНЫХ СПИРТАХ

В.И. Журавлев, Т.М. Усачева

(кафедра физической химии: e-mail: zhura-061@yandex.ru)

В настоящей работе проведен анализ результатов экспериментальных диэлектрических исследований 1,3-; 1,4- и 2,3-бутандиолов в интервале температур от 283 до 423 К на частоте от 1 МГц до 36 ГГц. Установлена связь релаксационных параметров уравнения Дэвидсона-Коула с молекулярной структурой исследованных бутандиолов. В рамках кластерной теории Диссадо-Хилла получены величины средних дипольных моментов кластеров молекул <µ_>. Показано, как зависит поведение <µ_> от энергетических характеристик выбранной модели.

Ключевые слова: бутандиолы, диэлектрические спектры, релаксационные процессы, кластеры, дипольные моменты, уравнения Дэвидсона-Коула и Диссадо-Хилла.

Развитие молекулярной теории жидких систем опирается на фундаментальные исследования их структуры, природы межмолекулярных взаимодействий, динамических процессов, протекающих в жидкостях при тепловом движении молекул. Понимание молекулярной природы макроскопических свойств жидкостей и растворов нуждается в целом ряде экспериментальных данных о их структуре. Построение геометрических моделей структуры многоатомных спиртов на сегодняшний день - сложная и пока во многом нерешенная задача, в отличие от двухмерных молекулярных моделей цепочечной ассоциации одноатомных спиртов со свободным и заторможенным вращением вокруг межмолекулярных связей. Наличие в диолах двух гидроксильных групп приводит к образованию как внутри-, так и межмолекулярных водородных связей О-Н...О, а следовательно, к большому разнообразию существующих в жидкости структур. Одним из методов, позволяющих изучать молекулярную структуру таких жидкостей и процессы ее перестройки, является метод диэлектрической радиоспектроскопии.

Известно, что в переменном синусоидальном поле вследствие того, что процессы установления поляризации в диэлектрике протекают с конечной скоростью, электрическая индукция D обладает сдвигом фазы ϕ относительно напряженности электрического поля E. Связь вектора напряженности электрического поля с вектором электрической индукции определяется через комплексную диэлектрическую проницаемость среды:

$$\boldsymbol{D} = \boldsymbol{\varepsilon} \ast(\boldsymbol{\omega}) \boldsymbol{E}, \tag{1}$$

где $\varepsilon^*(\omega) = \varepsilon'(\omega) - i\varepsilon''(\omega) = \varepsilon'(1 - i \operatorname{tg} \varphi)$; tg $\varphi = \varepsilon''/\varepsilon'$ – тангенс диэлектрических потерь, характеризующий сдвиг фазы φ электрической индукции **D** и напряженности поля **E**, ε' и ε'' – соответственно действительная часть диэлектрической проницаемости и диэлектрические потери при круговой частоте $\omega = 2 \pi f$.

В области слабых полей комплексная диэлектрическая проницаемость $\varepsilon^*(\omega)$ определяется с помощью функции релаксации дипольной поляризации $\alpha(t)$. Функция $\alpha(t)$, согласно [1], описывает уменьшение поляризации диэлектрика со временем, если внешнее поле мгновенно исчезает. Взаимосвязь $\varepsilon^*(\omega)$ и $\alpha(t)$ определяется соотношением:

$$\varepsilon^*(\omega) - \varepsilon_{\infty} = \int_0^{\infty} \alpha(t) \cos(\omega t) dt .$$
 (2)

Разделяя действительную и мнимую части в соотношении (2), получаем:

ş

$$\varepsilon'(\omega) - \varepsilon_{\infty} = \int_{0}^{\infty} \alpha(t) \cos(\omega t) dt,$$
 (3)

$$\varepsilon''(\omega) = \int_{0}^{\infty} \alpha(t) \sin(\omega t) dt.$$
(4)

С помощью функции $\alpha(t)$ может быть описан и процесс установления поляризации до ее равновесного значения при введении диэлектрика в постоянное поле. Если предположить, что функция релаксации $\alpha(t)$, описывающая временную зависимость поляризации при отключении внешнего поля, имеет вид:

$$\alpha(t) = \frac{\varepsilon_s - \varepsilon_\infty}{\tau} e^{-\frac{l}{\tau}},\tag{5}$$

где величина τ носит название времени релаксации и равна промежутку времени, за которое дипольная поляризация диэлектрика после снятия поля уменьшается в *е* раз. Подставляя (5) в (2), получаем:

$$\varepsilon^*(\omega) - \varepsilon_{\infty} = \frac{\varepsilon_s - \varepsilon_{\infty}}{1 - i\omega\tau}.$$
 (6)

Разделяя вещественную и мнимую части в соотношении (6), получим:

$$\varepsilon'(\omega) - \varepsilon_{\infty} = \frac{\varepsilon_s - \varepsilon_{\infty}}{1 + \omega^2 \tau^2}.$$
 (7)

$$\varepsilon''(\omega) = \frac{(\varepsilon_s - \varepsilon_\infty)\omega\tau}{1 + \omega^2\tau^2}.$$
(8)

Уравнения (7)–(8) называют формулами Дебая. График зависимости $\varepsilon'' = f(\varepsilon')$ представляет собой полуокружность с центром на оси абсцисс (координата $(\varepsilon_{\infty} + \varepsilon_{s})/2)$ и радиусом $(\varepsilon_{s} - \varepsilon_{\infty})/2$.

Уравнение (6) следует из термодинамической теории релаксационных явлений [2] и справедливо, если в системе имеет место одна нормальная реакция, приводящая к изменению поляризации системы. Степень полноты этой нормальной реакции является линейной комбинацией естественных реакций, протекающих в системе. Сюда относятся процессы трансляционного и вращательного движения молекул, сопровождающиеся разрывом и образованием межмолекулярных связей молекулы с окружением, конформационные превращения и т.д. [2]. К этому необходимо добавить, что соотношения Дебая (6) могут выполняться, в частности, и при протекании в жидкости множества процессов, приводящих к изменению поляризации системы. Подробно этот вопрос рассмотрен в работе [2]. В более общем случае, когда в системе протекает несколько нормальных реакций, приводящих к изменению поляризации системы, частотная зависимость $\varepsilon^*(\omega)$ выражается уравнением:

$$\varepsilon^*(\omega) = \varepsilon_{\infty} + \sum_{i=1}^n \frac{\varepsilon_{si} - \varepsilon_{\infty i}}{1 + i\omega\tau} , \qquad (9)$$

которое после разделения действительной и мнимой частей принимает вид:

$$\varepsilon'(\omega) = \varepsilon_{\infty} + \sum_{i=1}^{n} \frac{\varepsilon_{si} - \varepsilon_{\infty i}}{1 + \omega^{2} \tau_{i}^{2}},$$
(10)

$$\varepsilon''(\omega) = \sum_{i=1}^{n} \frac{(\varepsilon_{si} - \varepsilon_{\infty i})\omega\tau_i}{1 + \omega^2 \tau_i^2}.$$
 (11)

В соотношениях (10)–(11) ε_{si} и $\varepsilon_{\infty i}$ – низкочастотные и высокочастотные пределы *i*-й простой области дис-

персии соответственно, τ_i – время релаксации *i*-й нормальной реакции.

В тех случаях, когда в системе происходит достаточно большое число процессов, имеющих близкие времена релаксации, вместо дискретного набора времен релаксации используют непрерывную функцию распределения времен релаксации. Функция распределения времен релаксации $F(\tau)$ связана с введенной выше функцией $\alpha(t)$ соотношением

$$\alpha(t) = \int_{0}^{\infty} e^{-t/\tau} F(\tau) \frac{d\tau}{\tau}.$$
 (12)

Из (2) и (12) следует соотношение, связывающее $\varepsilon^*(\omega)$ с функцией распределения значений времени релаксации $F(\tau)$:

$$\varepsilon^*(\omega) - \varepsilon_{\infty} = \int_{0}^{\infty} \frac{F(\tau)d\tau}{1 - i\omega\tau}.$$
 (13)

Из (13) находим:

$$\varepsilon'(\omega) - \varepsilon_{\infty} = \int_{0}^{\infty} \frac{F(\tau)d\tau}{1+\omega^{2}\tau^{2}},$$
 (14)

$$\varepsilon''(\omega) = \int_{0}^{\infty} \frac{F(\tau)\omega\tau d\tau}{1+\omega^{2}\tau^{2}}.$$
 (15)

Функция $F(\tau)$ всегда положительна и удовлетворяет условию нормировки при $\omega = 0$:

$$\varepsilon_{S} - \varepsilon_{\infty} = \int_{0}^{\infty} F(\tau) d\tau.$$
 (16)

Для описания диэлектрических спектров жидкостей помимо соотношений (10)–(11) используют выражения, которым соответствуют различные непрерывные функции распределения значений времени релаксации. В нашей работе мы использовали уравнение Дэвидсона–Коула, для которого функция распределения времени релаксации имеет вид:

$$F(\tau) = \frac{\sin \beta \pi}{\pi} \left(\frac{\tau}{\tau_{\beta} - \tau} \right)^{\beta}, \text{ если } \tau \le \tau_{\beta}, \quad (17)$$
$$F(\tau) = 0, \text{ если } \tau > \tau_{\beta}.$$

Здесь τ_{β} – максимальное время релаксации, β – параметр, характеризующий ширину спектра времен релаксации. Частотная зависимость комплексной диэлектрической проницаемости, соответствующая функции распределения (17), имеет вид:

$$\varepsilon^*(\omega) = \varepsilon_{\infty} + \frac{\varepsilon_s - \varepsilon_{\infty}}{(1 + i\omega\tau)^{\beta}}.$$
 (18)

Основная задача проводимых нами исследований – установление связи релаксационных параметров уравнения (18) с молекулярной структурой жидкостей и процессами ее перестройки в ходе теплового движения. В предыдущей работе [3] были приведены экспериментальные результаты исследования ряда бутандиолов в статическом электрическом и в высокочастотном полях.

Дальнейший анализ полученных экспериментальных данных [3] проводили в рамках развиваемой нами релаксационной теории Диссадо-Хилла [4-5]. Согласно данной теории, за счет сил притяжения в чистых жидкостях образуются области с локально упорядоченной структурой - кластеры. Для получения характеристики кластеров необходимо знать их структуру, состав и значения энергии химических связей между молекулами. Как правило, в чистых жидкостях имеется много различных кластеров. Но можно определить основные (типичные) кластеры, наиболее часто встречающиеся в данной жидкости, которые в первом приближении определяют ее строение. Такая характеристика будет, конечно, приближенной, но она открывает возможность проверки ее несколькими независимыми методами, а также возможность изучения молекулярных механизмов процессов, протекающих в жидкостях.

Основная предпосылка релаксационной модели Диссадо–Хилла такая же, как и в модели Дебая: два варианта ориентации группы атомов или молекул (кластера) соответствуют минимумам на потенциальной кривой. Релаксация связана с переходами из одного минимумама в другой. Отличие данной модели состоит в том, что в явном виде записывается разница в значениях энергии между этими двумя минимумами: $2(B + kT_cM_e)^1$. Здесь k – постоянная Больцмана, T_c – критическая (характеристическая) температура, M_e – единичный вектор продольной составляющей дипольного момента кластера задается соотношением:

$$M_e = tanh\left(\frac{B + kT_cM_e}{kT}\right).$$
 (19)

На рис. 1 представлена энергетическая схема двухуровневой системы. Необходимо отметить, что под кластерами в данной модели понимают частично ассоциированные структурные группы. Степень структурной упорядоченности среднестатистического кластера минимального размера характеризуется параметром $0 \le n_{DH} \le 1$.

При n = 0 кластеры не образуются, а корреляция между процессами переориентации молекул отсутствует. При n = 1 кластеры имеют кристаллическую структуру, в которой процессы переориентации молекул полностью скоррелированы. Кластеры в свою очередь входят в состав межкластерных образований, степень структурной упорядоченности внутри которых определяется параметром $1 - m_{DH}$, где $0 \le m_{DH} \le 1$. Крайние значения $m_{DH} = 0$ и $m_{DH} = 1$ соответствуют идеальной кристалической решетке и жидкости с идеальным гидродинамическим движением.

Для кластерной модели Диссадо–Хилла дисперсия диэлектрической проницаемости $\varepsilon^*(\omega)$ описывается уравнением:

Рис. 1. Энергетическая схема двухуровневой системы: *a* – процесс, связанный с торсионными и либрационными внутримолекулярными колебаниями; *b* – внутрикластерный активационный релаксационный процесс; *c* – межкластерный процесс синхронного обмена молекулами

$$\frac{\varepsilon^{*}(\omega) - \varepsilon_{\infty DH}}{\varepsilon_{s} - \varepsilon_{\infty DH}} = \left(1 + \frac{i\omega}{\omega_{p}}\right)^{n-1} \frac{{}_{2}F_{1}\left[1 - n, 1 - m; 2 - n; \left(1 + \frac{i\omega}{\omega_{p}}\right)^{-1}\right]}{{}_{2}F_{1}\left(1 - n, 1 - m; 2 - n; 1\right)}, (20)$$

где $\varepsilon_{\infty DH}$ – высокочастотный предел области дисперсии, обусловленный вкладом электронной и атомной поляризации, а также высокочастотного процесса релаксации $\varepsilon_{\infty 2}$; $_2F_1[...]$ – Гауссовские гипергеометрические функции. Уравнение (20) соответствует:

уравнению Дебая (при $n = 0, m = 1, \omega_p = \tau_D^{-1}$),

уравнению Коула–Коула (при $m = 1 - \alpha_{\rm CC}$, $n = \alpha_{\rm CC}$, $\omega_p = \tau_{\rm CC}^{-1}$),

уравнению Дэвидсона–Коула (при $m = 1, 1 - n = \beta_{DC}, \omega_p = \tau_{DC}^{-1}$),

уравнению Гаврильяка-Негами (при $m = 1 - \alpha_{\rm HN}, 1 - n = \beta_{\rm HN}(1 - \alpha_{\rm HN}), \omega_p = \tau_{\rm HN}^{-1}).$ Максимум диэлектрических потерь є'' наблюдает-

Максимум диэлектрических потерь ε'' наблюдается при $\omega = \omega_p$ только в случае n = m. При анализе данных о дисперсии $\varepsilon^*(\omega)$ релаксационные параметры $n, m, \omega_{pDH,} \varepsilon_{\infty DH}$ уравнения (20) подбираются для каждого значения температуры. После выбора начального приближения проводится большое число циклов минимизации искомых параметров. Оптимальные значения параметров получают в результате минимизации функционала вида:

$$S^{2} = \sum_{i=1}^{n} \left\{ \left(\frac{\varepsilon_{ie}' - \varepsilon_{it}'}{\varepsilon_{ie}'} \right)^{2} + \left(\frac{\varepsilon_{ie}'' - \varepsilon_{it}''}{\varepsilon_{ie}''} \right)^{2} \right\}.$$
 (21)

Найденные таким образом параметры *n*, *m*, ω_{pDH} , $\varepsilon_{\infty DH}$, описывающие дисперсию $\varepsilon^*(\omega)$ бутандиолов в интервале температур T = 298-423 K, составили:

для 1,3-бутандиола

1

n = 0,41-0,261; m = 0,753-0,980;

для 1,4-бутандиола

n = 0,41-0,20; m = 0,949-0,980;

для 2,3-бутандиола

n = 0,524-0,135; m = 0,890-0,986.

Полученные результаты расчета τ по уравнениям (18), (20), (25) в сравнении друг с другом представлены на рис. 2, *а*, *б*. Более подробный анализ расчетов времен релаксации с использованием уравнений (18), (20), (25) представлен в работе [6].

Зависимости времени релаксации (τ_{DH} и τ_{DC}) от обратной температуры представлены на рис. 2. Как видно из рис. 2, *a*, расчеты τ , выполненные по уравнениям (18) и (20), очень близки. На рис. 2, *б* представлены зависимости τ_{DH} и τ_{VFT} от обратной температуры. И в данном случае расчеты τ , выполненные

Рис. 2. Зависимости времени релаксации от обратной температуры, рассчитанные по уравнениям: $a - (18), (20), \delta - (20), (25)$ при времени релаксации τ_{DH} (l - 1, 4-бутандиол, 2 - 1, 3-бутандиол, 3 - 2, 3-бутандиол) и τ_{DC} (l' - 1, 4-бутандиол, 2' - 1, 3-бутандиол, 3' - 2, 3-бутандиол)

по уравнениям (20) и (25), также коррелируют между собой.

Нелинейная температурная зависимость константы скорости суммарного кооперативного процесса ω_{DHih} связана с процессами перестройки молекулярной структуры кластеров уравнением:

$$\omega_{DHth} = v_{0DH} \exp(-\Delta/kT) \cosh\left(\frac{B_{DH} + kT_c M_e}{kT}\right) \times \left\{1 - \frac{T_c}{T} (1 - M_e^2)\right\},$$
(22)

где v_{DH} – максимальная скорость перехода через активационный барьер $\Delta = E_{DH}^{\#} + B_{DH} + kT_cM_e$ процесса диэлектрической релаксации, $E_{DH}^{\#}$ – энергия активации процесса диэлектрической релаксации за счет теплового движения; kT_cM_e учитывает межмолекулярные взаимодействия через T_c -характеристическую температуру; $2B_{DH}$ определяет среднюю энергию внутреннего поля. Величина $2(B_{DH} + kT_cM_e)$ определяет высоту барьера, который преодолевается при синхронном обмене молекулами между соседними кластерами, $M_e = tanh(B_{DH} + kT_cM_e)/kT$ – продольная компонента единичного вектора среднего дипольного момента кластера $\langle \bar{\mu} \rangle$. С учетом того, что 1/ $\omega_{DHth} = \tau_{DHth}$, уравнение (22) примет вид:

$$\tau_{DHth} = \tau_{0DH} \exp(\Delta/kT) / \cosh\left(\frac{B_{DH} + kT_c M_e}{kT}\right) \times \left\{1 - \frac{T_c}{T} (1 - M_e^2)\right\}.$$
(23)

При каждом значении температуры существует распределение кластеров по форме и размерам, которому соответствует среднестатистический квадрат дипольного момента кластера $\langle \overline{\mu}_c^2 \rangle$. Величина $\langle \overline{\mu}_c^2 \rangle$ рассчитывается из амплитуды области дисперсии $\varepsilon^*(\omega)$. Амплитуда области дисперсии $\varepsilon_s - \varepsilon_{\infty}$ зависит как от релаксационных параметров *n*, *m*, ξ , ω_p , так и от величины среднего дипольного момента кластера $\overline{\mu}_c^2$, которая определяется молекулярной структурой кластера. Связь между этими величинами описывается уравнением

$$\varepsilon_{s} - \varepsilon_{\infty DH} = \left(\frac{\omega_{p}}{\xi}\right)^{n} \cos\left(\frac{n\pi}{2}\right) \frac{N_{A}}{V_{M}} \mu_{c}^{2} \frac{(1 - M_{e}^{2})}{kT} \times \left\{1 - \frac{T_{c}}{T} (1 - M_{e}^{2})\right\}^{-1} \frac{\Gamma(1 - n)}{m}, \qquad (24)$$

где $N_{\rm A}$ – число Авогадро, $V_{\rm M}$ – молярный объем, $\Gamma(1-n)$ – гамма-функция.

Необходимо особо подчеркнуть, что уравнение (24) – основное уравнение модели Диссадо–Хилла, связывающее экспериментальные данные и параметры «равновесной» и «динамической» структур¹. Важно также отметить, что уравнение (24), для которого находили релаксационные параметры *n*, *m*, ω_p , нормализовано относительно характеристической температуры T_c , которую обычно выбирают равной температуре фазового перехода, например, равной температуре стеклования T_g .

Стеклообразующие материалы, в частности диолы, характеризуются способностью переохлаждаться, минуя кристаллизацию. В переохлажденном состоянии значения времени релаксации $\tau(T)$ и вязкости $\eta(T)$ резко возрастают с понижением температуры. Это переохлажденное, но внутренне уравновешенное жидкое состояние сохраняется в интервале $T_g < T < T_m$, где T_g – температура стеклования, ниже которой в веществе не может установиться равновесное состояние за время <100 с, T_m – температура плавления. Время диэлектрической релаксации т при стандартной температуре стеклования T_g принимают равным $\tau_{g} = 100$ с. К сожалению, в литературе не всегда можно обнаружить значения температуры стеклования бутандиолов. Поэтому значение Т_g можно определить экстраполяцией полинома, описывающего температурную зависимость времени релаксации, к величине T_{gDH} (100 с), которой соответствовала T_g .

Температуру стеклования можно также определить, используя уравнения Фогеля–Фулчера–Таммана (ФФТ) и Вильямса–Лэндела–Ферри (ВЛФ). ФФТ описывает нелинейную температурную зависимость времени релаксации:

или

 $\ln \tau_{VFT}(1/T) = A + B/(T - T_0)$

$$\tau_{VFT} = \tau_{0VFT} \exp(U^{+}_{VFT}/RT),$$

 $^{{}^{1}\}omega_{p}$ – частота релаксации; ξ полагают равной v_{ODH} (величины порядка $10^{12}-10^{13}$ Гц); $\langle \overline{\mu}_{c}^{2} \rangle$ – средняя величина локального диполя (дипольного момента кластера); $\Gamma(1-n)$ – гамма-функция, n и m можно рассматривать как параметры, характеризующие внутри- и межкластерную корреляцию соответственно.

где τ_{VFT} – время диэлектрической релаксации, *A*, *B* и T_0 – константы. Тогда времени релаксации при температуре стеклования $\tau_g = \tau_{VFT}$ будет соответствовать температура

$$\tau_{gVFT} = T_0 + B/(\ln(100) - A).$$
(25)

Энергия активации процесса диэлектрической релаксации $U^{\#}_{VFT}$ зависит от температуры и имеет вид:

$$U_{VFT}^{\#} = \frac{U_{\infty VFT}^{\#}T}{T - T_0},$$
 (26)

где T_0 – температура, при которой τ_{VFT} стремится к ∞ .

Уравнение (ВЛФ) описывает зависимость времени релаксации τ от температуры стеклования T_g и имеет вид:

lg (
$$\tau(T)/\tau_g(T_g)$$
) = $-\frac{c_1(T-T_g)}{(c_2+T-T_g)}$ при $T > T_g$, (27)

где $\tau(T)$ и $\tau_g(T_g)$ – время релаксации при значениях температуры T и T_g соответственно. Коэффициенты уравнений ФФТ и ВЛФ (26) и (27) связаны между собой соотношениями:

$$c_1 = \frac{U_{\infty VFT}^{\#}}{2,303kc_2} , \ c_2 = T_g - T_{\infty VFT} .$$
 (28)

Решая совместно уравнения (27)–(28), определяем значение T_g так, чтобы τ_g (T_g) = 100 с. Для 1,3-бу-тандиола значение T_g составило 201 К, для 1,4-бутандиола – 192,2 К, для 2,3-бутандиола – 236,05 К.

Чтобы проверить, как время релаксации, рассчитанное по уравнению $\tau_{DHth} = 1/\omega_{pDHth}$, описывает время релаксации τ_{DHexp} , необходимо выбрать параметр B_{DH} . Было сделано предположение, что величина B_{DH} не меняется при фазовом переходе, т.е. не зависит от температуры. Для ее определения были рассчитаны кажущиеся энтальпии активации, соответствующие экспериментальным данным $H^{\#}_{DHexp}$ (рис. 3, *a*) и модели Диссадо-Хилла $H^{\#}_{DHth}$ (рис. 3, *б*)

$$H^{\#}_{DH\exp} = k[d(\ln \tau_{DH\exp})d(1/T)], \qquad (29)$$

$$H_{DH \exp}^{\#} = H_{DHth}^{\#} + (1 - M_e) \left[B_{DH} + kT_c M_e + k \frac{T_c}{T} \frac{dM_e}{d(1/T)} \right] + \frac{T_c (1 - M_e^2) - 2M_e \frac{T_c}{T} \frac{dM_e}{d(1/T)}}{1 - T_c (1 - M_e^2)/T},$$
(30)

где
$$H_{DHth}^{\#} = E_{DH}^{\#} + \frac{dE_{DH}^{\#}}{d(1/T)}$$
.

Рис. 3. Энергетические характеристики модели Диссадо–Хилла: *а* – энтальпия активации $H_{DH \exp}^{\#}$ и активационный барьер Δ ; $\delta - E_{DH}^{\#}$ и $B_{DH} + kT_c M_e (l, l' - 1, 4$ -бутандиол, *2, 2'* – 1,3-бутандиол, *3, 3'* – 2,3-бутандиол, *4* – RT_{\exp})

Значение B_{DH} выбрается таким образом, чтобы во всем интервале температур различия $|H^{\#}_{DHexp} - H^{\#}_{DHth}| \le 0,30$ кДж/моль. Полученные таким образом значения B_{DH} в свою очередь позволили рассчитать значения $<\overline{\mu}_c >$, температурные зависимости которого представлены на рис. 4

$$H^{\#}_{DHexp} - H^{\#}_{DHth}$$

Температурные зависимости $H^{\#}_{DHexp}$, Δ , $E^{\#}_{DHth}$, $B_{DH} + kT_cM_e$ (рис. 3, *a*, *б*) позволяют понять, как зависит от них поведение среднего дипольного момента кластера μ_c . Величина μ_c определяется значением $E^{\#}_{DHth}$, а скорость его уменьшения с ростом температуры (рис. 4) барьером $B_{DH} + kT_cM_e$. На рис. 4 показаны температурные зависимости μ_c в рамках расчетов по уравнениям Дэвидсона-Коула и Диссадо-Хилла. Различия в ходе температурной зависимости μ_c наблюдаются только для 2,3-бутандиола, а для остальных диолов они практически совпадают. Эти вопросы будут предметом обсуждения в последующих статьях.

Таким образом, проведенные расчеты в рамках подхода, развиваемого нами, позволяют анализировать зависимость энергетических параметров от по-

СПИСОК ЛИТЕРАТУРЫ

- 1. Фрелих Г. Теория диэлектриков. М., 1960.
- Шахпаронов М.И. Механизмы быстрых процессов в жидкостях. М., 1980. С. 352.
- 3. Журавлев В.И., Лифанова Н.В., Усачева Т.М. // ЖОХ. 2008. 87. С. 92.

Рис. 4. Зависимости рассчитанного дипольного момента кластеров μ_c от температуры: $\mu_{cDH}(l - 1,4$ -бутандиол, 2 - 1,3-бутандиол, 3, 2,3-бутандиол), $\mu_{cDC}(l' - 1,4$ -бутандиол, 2' - 1,3-бутандиол, 3' - 2,3-бутандиол)

ложения ОН-групп. Это в свою очередь открывает дальнейший путь для моделирования структуры кластеров в исследованных бутандиолах.

- Структура и динамика молекулярных систем // Сб. статей. М.; Йошкар-Ола; Уфа; Казань. 2008. Вып 15. С. 21.
- Dissado L.A., Hill R.M. // Proc. R. Sos. Lond. A. 1983.390. P. 131.
- 6. Усачева Т.М., Лифанова Н.В., Журавлев В.И., Матвеев В.К. // ЖСХ. 2009. **50**. С. 967.

Поступила в редакцию 15.11.10

NEW APPROACH TO RELAXATION DATA ANALYSIS IN POLYHYDRIC ALCOHOLS

V.I. Zhuravlev, T.M. Usacheva

(Division of Physical Chemistry)

In this work, experimental data on dielectric permittivity in the frequency range from 1 MHz to 36 GHz and in the temperature range from 283 to 423 K for 1,3-, 1,4- and 2,3-butanediols are analysed. Some relations between parameters of Davidson & Cole equation and molecular structure of butanediols under consideration have been found. Mean values of dipole moments of molecular clusters, $<\mu_c>$, have been calculated in the framework of Dissado & Hill cluster theory. Dependence of $<\mu_c>$ on energy parameters of this model has been revealed and discussed.

Key words: butanediols, dielectric spectra, relaxation processes, clusters, dipole moments, Davidson & Cole equation, Dissado & Hill equation.

Сведения об авторах: *Журавлев Владимир Иванович* – вед. науч. сотр. кафедры физической химии химического факультета МГУ, канд. физ.-матем. наук (zhura-061@yandex.ru); *Усачева Татьяна Михайловна* – ст. науч. сотр. кафедры физической химии химического факультета МГУ, канд. физ.-матем. наук.