УДК 548.737

## КРИСТАЛЛИЧЕСКАЯ СТРУКТУРА 9-(5,5-ДИМЕТИЛ-2,4,5,6-ТЕТРАГИДРО-1*Н*-ФЕНАЛЕН-2-ИЛ)-5,5,9-ТРИМЕТИЛ-5,6,8,9-ТЕТРАГИДРОЦИКЛОПЕНТА[*A*]ФЕНАЛЕН-10(4*H*)-ОНА

## А.М. Банару\*, А.Ф. Смольяков

(кафедра физической химии; \*e-mail: banaru@phys.chem.msu.ru)

Методом рентгеноструктурного анализа исследованы кристаллы 9-(5,5-диметил-2,4,5,6-тетрагидро-1*H*-фенален-2-ил)-5,5,9-триметил-5,6,8,9-тетрагидро-циклопента[*a*]фенален-10(4*H*)-она. В атом-атомном приближении в кристаллической структуре выполнен расчет энергии межмолекулярного взаимодействия. Установлены характер структуры и структурный подкласс.

**Ключевые слова:** рентгеноструктурный анализ, энергия межмолекулярного взаимодействия, структурный подкласс, критическое координационное число.

Органические соединения кристаллизуются преимущественно в низших сингониях (триклинной, моноклинной, ортогональной) [1, 2]. Согласно давним выводам Китайгородского [3], молекулярные кристаллы, построенные на слабых ван-дер-ваальсовых взаимодействиях, склонны к плотным молекулярным упаковкам. К элементам симметрии, которые наилучшим образом сочетаются с плотной упаковкой, относятся плоскости скользящего отражения, винтовые оси 2, и центр инверсии [4]. Перечисленные элементы симметрии являются элементами второго порядка, поэтому формируются преимущественно кристаллы тех сингоний, где нет элементов симметрии порядка выше двух, т.е. сингоний низшей категории симметрии. Более чем в 80% случаев органическая молекула сохраняет при кристаллизации свою центросимметричность (если ее наивысшая симметрия центросимметрична), при этом другие элементы симметрии молекулы переносятся в кристалл гораздо реже [5], и ее конформация в кристалле становится низкосимметричной.

Молекулы «не знают» пространственных групп, и их взаимное расположение в кристалле зависит от симметрии потенциального поля вокруг молекулы, причем это поле стационарно только у очень жестких молекул, а у гибких меняется в процессе кристаллизации. Считается, что итоговое взаимное расположение и итоговые конформации молекул должны отвечать минимуму свободной энергии кристалла, однако чаще (с учетом того, что объем кристаллической фазы меняется незначительно) говорят о минимуме потенциальной энергии [6].

П.М. Зоркий рассматривал кристалл как иерархическое объединение молекулярных агломератов (островных, цепочечных, слоистых) [7]. Эти агломераты выделяются в кристаллической структуре на основе анализа энергии межмолекулярного взаимодействия и ее вклада в общую энергию кристалла. Принято считать, что структура слоистая, если на рассматриваемые слои приходится, по крайней мере, половина общей энергии кристалла (минимальная эффективность слоев равна 50%); структура является цепочечной, если на молекулярную цепь приходится хотя бы треть общей энергии (минимальная эффективность цепей 33%), а димеры в структуре могут быть выделены, если их энергия составляет хотя бы одну шестую часть общей энергии (минимальная эффективность димеров 17%). Предполагается, что при равных возможностях кристалл формируется с наименьшим числом объединений агломератов неодинаковой размерности. Например, если данная пространственная группа допускает вариант, при котором молекулы за счет одного сильного межмолекулярного контакта объединяются в слои, а затем слои за счет второго, менее сильного контакта объединяются в трехмерную структуру, то этот вариант предпочтительнее того, в котором сначала молекулы объединяются в цепь, затем цепи объединяются в слой и лишь после этого слои формируют каркас [6]. Разумеется, здесь речь идет не о стадиях кристаллизации как таковых, а только о наблюдаемом результате. Если бы молекулярные цепи в описанном примере оказались энергетически выгоднее слоев, то вряд ли эти слои в итоге сформировались бы, и, вероятнее всего, у кристалла была бы другая пространственная группа.

Наименьшее число уникальных межмолекулярных контактов, достаточных для образования кристалла, называется его критическим координационным числом (ККЧ) [8, 9]. Это число зависит от пространственной группы кристалла и от типа занятых молекулами систем симметрически эквивалентных позиций, т.е. от структурного класса кристалла. ККЧ показывает наименьшее число агломератов различной размерности в структурном подклассе кристалла [7]. ККЧ кристалла, в котором молекулы занимают единственную общую систему эквивалентных позиций, является инвариантом пространственной группы. В настоящей работе мы ищем ответ на вопрос, совпадает ли ККЧ с числом наиболее сильных межмолекулярных контактов в конкретной кристаллической структуре. Объект исследования во многом случаен: исследуемое вещество было получено на кафедре органической химии старшим научным сотрудником В.В. Измером на одной из промежуточных стадий синтеза новых лигандов для металлорганических комплексов, которые пробуются в качестве катализаторов полимеризации олефинов. Это вещество обладает типичными чертами кристаллических структур небольших органических молекул, поэтому мы включили его в наш расчет.

#### Экспериментальная часть

Рентгеноструктурный анализ 9-(5,5-диметил-2,4,5,6-тетрагидро-1*H*-фенален-2-ил)-5,5,9триметил-5,6,8,9-тетрагидроциклопента[а]фенален-10(4H)-она (А) выполнен на автоматическом дифрактомере «Bruker SMART APEX II» с координатным детектором [10] (МоКа, графитовый монохроматор, ω-сканирование) при температуре 120 К. Полуэмпирический учет поглощения проводили по программе SADABS [11]. Структура расшифрована прямыми методами и уточнена по  $F^2$ -полноматричным МНК в анизотропном приближении для неводородных атомов. Все атомы водорода помещены в геометрически рассчитанные положения и включены в уточнение в модели «наездника». Все расчеты выполнены на персональном компьютере с использованием комплекса программ SHELXTL [12]. Параметры эксперимента приведены в табл. 1, координаты атомов – в табл. 2, молекулярная структура соединения А представлена на рис. 1.

## Методика расчета

Значения энергии межмолекулярного взаимодействия вычисляли с помощью программы Mercury [13] в атом-атомном приближении:

## $U_{\rm MM} = \sum \varphi_{ij}$

где *i* и *j* – индексы атомов, относящихся к разным молекулам. В расчете использовали атом-атомные

потенциалы 6-ехр с параметрами Филиппини-Гавецотти [14], в которых неявно учитываются и электростатические взаимодействия:

$$\varphi_{ij} = -Cr_{ij} + A\exp(-Br_{ij})$$

Величину полной энергии  $U_{\Sigma}$  находили суммированием энергии парных взаимодействий  $U_{\rm MM}$  как энергию выхода исходной молекулы из кристалла в расчете на 1 моль вещества. В расчет включаются 200 самых сильных взаимодействий, что обеспечивает пренебрежимо малую ошибку обрыва ряда при суммировании (менее 0,1%). Для характеристики молекулярных агломератов рассчитывали их эффективность, которая выражается отношением  $U_{\rm arr}/U_{\Sigma}$ , где  $U_{\rm arr}$  – суммарная энергия взаимодействия некоторой молекулы, входящей в агломерат, со всеми иными его молекулами.

## Обсуждение результатов

Молекула A хиральна, так как содержит асимметрический атом C(1), и при этом образует оптически неактивный кристалл (рацемат). В молекуле есть два больших полициклических фрагмента, которые скрещиваются почти под прямым углом.



Рис. 1. Молекулярная структура соединения А

Таблица 1

Кристаллографические данные для соединения А и параметры эксперимента

| Эмпирическая формула                                                 | C <sub>34</sub> H <sub>36</sub> O                                |
|----------------------------------------------------------------------|------------------------------------------------------------------|
| M <sub>r</sub>                                                       | 460,63                                                           |
| Сингония                                                             | Моноклинная                                                      |
| <i>a</i> , Å                                                         | 15,2578(7)                                                       |
| <i>b</i> , Å                                                         | 11,7041(6)                                                       |
| <i>c</i> , Å                                                         | 29,8900(14)                                                      |
| α, град                                                              | 90                                                               |
| β, град                                                              | 94,7400(10)                                                      |
| ү, град                                                              | 90                                                               |
| $V, Å^3$                                                             | 5319,5(4)                                                        |
| Пространственная группа                                              | C2/c                                                             |
| Ζ                                                                    | 8                                                                |
| F(000)                                                               | 1984                                                             |
| $ρ_{\rm выч},  \Gamma/cm^3$                                          | 1,150                                                            |
| $\mu(MoK_{\alpha}),  {\rm Mm}^{-1}$                                  | 0,067                                                            |
| 20 <sub>макс</sub> , град                                            | 54                                                               |
| Экспериментальные<br>интервалы <i>hkl</i>                            | $-19 \le h \le 19,$<br>$-14 \le k \le 14,$<br>$-38 \le l \le 38$ |
| Число измеренных<br>отражений                                        | 26916                                                            |
| Число независимых<br>отражений                                       | 5814                                                             |
| R <sub>int</sub>                                                     | 0,0435                                                           |
| Число отражений с <i>F</i> > 4 σ( <i>F</i> )                         | 4373                                                             |
| Число параметров                                                     | 321                                                              |
| wR <sub>2</sub>                                                      | 0,1362                                                           |
| $R_1(F > 4\sigma(F))$                                                | 0,0511                                                           |
| S                                                                    | 1,034                                                            |
| Остаточная электронная плотность, $e \cdot Å^{-3}(d_{MHH}/d_{Make})$ | 0,391/-0,169                                                     |

Значение двугранного угла между плоскостями только ароматических фрагментов C(23)C(24)C(25)C(26)C(27)C(29) и C(13)C(14)C(3)C(4)C(5)C(30)C(9)C(10)C(11)C(12) (рис. 1) составляет  $81,6^{\circ}$ . В то же время угол между средними плоскостями больших полициклических фрагментов (с тремя и четырьмя углеродными циклами, соответственно) равен  $81,4^{\circ}$  (отличие незначительное). Такая геометрия способствует образованию димера, в котором указанные фрагменты у двух молекул тесно взаимодействуют, о чем будет сказано ниже.

Кристаллы A относятся к пространственной группе C2/c моноклинной сингонии, Z = 8(1), т.е. все молекулы занимают единственную общую систему эквивалентных позиций. Ближайшая к началу координат молекула (внутри элементарной ячейки) образует наиболее прочный контакт с молекулой, симметрически связанной с ней посредством поворотной оси 2 (0, *y*, 1/4), и образует димер ( $U_{\rm MM} = -99,1$  кДж/моль), показанный на рис. 2.

В димере реализованы наиболее сильпарные межатомные взаимодействия: ные C(20)...C(30),C(9)...C(20),C(2)...C(4),C(8)...C(23), C(8)...C(29) с расстоянием около 3,9 Å и  $\phi = -0,39$  кДж/моль. Всего в димере 57 довольно сильных взаимодействий С...С с  $|\phi| \ge 0.30$  кДж/моль, из которых почти все дублированы поворотной осью (28 пар эквивалентных взаимодействий), и лишь взаимодействие C(4)...C(4) 4,0 Å ( $\phi = -0,37$  кДж/моль) не дублируется, так как пересекает поворотную ось. Самое сильное взаимодействие С...Н лишь 105-е по значению межатомного потенциала (С(6)... H2A,  $\phi = -0.21$  кДж/моль), а самое сильное взаимодействие С...О лишь 561-е (O(1)...C(20),  $\phi = -0.04 \ \kappa \exists ж/моль)$ . Последнее связано с тем, что атомы О фактически вывернуты кнаружи димера. Всего в энергию димера включен 5041 межатомный потенциал (с учетом эквивалентных пар), из которых только 11 не аттрактивны ( $\phi > 0$ ). При этом 1906 взаимодействий незначительны (| $\phi$ | < 1 Дж/моль).



Рис. 2. Шаровая модель димера в кристаллической структуре A в ван-дер-ваальсовых радиусах по Бонди [15] (проекция вдоль оси b)

Таблица 2

Координаты неводородных атомов (×10<sup>4</sup>) и параметры их изотропных смещений (Å<sup>2</sup>×10<sup>3</sup>) для соединения А

| Атом  | x       | У       | Z       | $U_{\rm eq}$ |
|-------|---------|---------|---------|--------------|
| O(1)  | 3093(1) | 4212(1) | 2299(1) | 34(1)        |
| C(1)  | 2560(1) | 5742(1) | 2758(1) | 25(1)        |
| C(2)  | 1705(1) | 6445(2) | 2681(1) | 29(1)        |
| C(3)  | 1372(1) | 6197(1) | 2203(1) | 25(1)        |
| C(4)  | 685(1)  | 6761(2) | 1950(1) | 28(1)        |
| C(5)  | 463(1)  | 6447(2) | 1513(1) | 26(1)        |
| C(6)  | -276(1) | 7021(2) | 1235(1) | 31(1)        |
| C(7)  | -87(1)  | 7156(2) | 743(1)  | 28(1)        |
| C(8)  | 74(1)   | 5955(2) | 563(1)  | 29(1)        |
| C(9)  | 754(1)  | 5278(2) | 848(1)  | 25(1)        |
| C(10) | 1212(1) | 4406(2) | 667(1)  | 29(1)        |
| C(11) | 1848(1) | 3775(2) | 926(1)  | 28(1)        |
| C(12) | 2051(1) | 4041(1) | 1369(1) | 25(1)        |
| C(13) | 1609(1) | 4944(1) | 1570(1) | 23(1)        |
| C(14) | 1822(1) | 5316(1) | 2021(1) | 22(1)        |
| C(15) | 2544(1) | 4958(1) | 2343(1) | 25(1)        |
| C(17) | 2594(1) | 5016(1) | 3191(1) | 23(1)        |
| C(18) | 1811(1) | 4240(1) | 3194(1) | 24(1)        |
| C(19) | 1478(1) | 3881(1) | 3571(1) | 22(1)        |
| C(20) | 714(1)  | 3071(2) | 3575(1) | 25(1)        |
| C(21) | 893(1)  | 2115(1) | 3922(1) | 23(1)        |
| C(22) | 1058(1) | 2680(1) | 4385(1) | 24(1)        |
| C(23) | 1721(1) | 3636(1) | 4404(1) | 21(1)        |
| C(24) | 2144(1) | 3972(2) | 4813(1) | 25(1)        |
| C(25) | 2734(1) | 4874(2) | 4836(1) | 27(1)        |
| C(26) | 2918(1) | 5446(2) | 4449(1) | 25(1)        |
| C(27) | 2510(1) | 5125(1) | 4035(1) | 22(1)        |
| C(28) | 2667(1) | 5766(2) | 3611(1) | 24(1)        |
| C(29) | 1906(1) | 4219(1) | 4012(1) | 20(1)        |
| C(30) | 934(1)  | 5549(1) | 1311(1) | 23(1)        |
| C(31) | 3374(1) | 6501(2) | 2742(1) | 34(1)        |
| C(32) | 1690(1) | 1411(2) | 3813(1) | 30(1)        |
| C(33) | 88(1)   | 1345(2) | 3925(1) | 35(1)        |
| C(34) | -887(1) | 7682(2) | 476(1)  | 40(1)        |
| C(35) | 714(1)  | 7924(2) | 705(1)  | 31(1)        |

Второй по силе контакт ( $U_{\rm MM}$  = -61,1 кДж/моль) исходная молекула образует с двумя молекулами, симметрически связанными с ней винтовой осью  $2_1$  (1/4, y, 1/4), что порождает молекулярную цепь вдоль этой винтовой оси. С учетом димеризации исходной молекулы в плоскости (x, y, 1/4) выделяется молекулярный слой симметрии С<sub>1</sub>2. Третий по силе контакт ( $U_{\rm MM}$  = -18,8 кДж/моль) в кристаллической структуре отвечает взаимодействию между указанными слоями: он связывает исходную молекулу с молекулой, полученной действием на исходную плоскости скользящего отражения c(x, 1/2, z). Четвертый контакт сформирован действием центра инверсии і (1/4, 1/4, 1/2) и тоже связывает между собой слои ( $U_{\rm MM}$  = -18,4 кДж/моль). Энергия пятого и последующих по силе контактов практически монотонно убывает (рис. 3). Общая энергия кристалла  $U_{\Sigma}$  = -259,8 кДж/моль, при этом эффективность выделенных слоев составляет примерно 75%, а эффективность объединенных в слой димеров – пример-



Рис. 3. Энергия наиболее сильных межмолекулярных контактов в кристаллической структуре A в порядке убывания энергии



Рис. 4. Проекция кристаллической структуры A вдоль оси b (шаростержневая модель). Димер изображен черным цветом. Атомы водорода не показаны

но 38%. Таким образом, структура состоит из димеров и при этом имеет выраженный слоистый характер (рис. 4). Ее структурный подкласс:

$$2 - C_1 2, Z = 4(1) C 2/c, Z = 8(1).$$

ККЧ для пространственной группы C2/c с единственной занятой системой позиций общего типа равно трем [9]. Примечательно, что излом на графике  $-U_{\rm MM}(N)$  (рис. 3) в точности соответствует третьему сильному контакту. Эта ситуация напоминает правило «сломанной трости» в анализе главных компонент (principal component analysis),

## СПИСОК ЛИТЕРАТУРЫ

- 1. Belsky V.K., Zorkaya O.N., Zorky P.M. // Acta Cryst. 1995. Vol. A51. P. 473.
- 2. Зоркий П.М., Олейников П.Н. // Журн. физической химии. 2000. Т. 74. С. 1944.
- Китайгородский А.И. Органическая кристаллохимия. М., 1955.
- 4. *Filippini G., Gavezzotti A.* // Acta Cryst. 1992. Vol. B48. P. 230.
- Pidcock E., Motherwell W.D.S., Cole J.C. // Acta Cryst. 2003. Vol. B59. P. 634.
- 6. Zorky P.M. // J. Mol. Struct. 1996. Vol. 374. P. 9.
- 7. Зоркий П.М., Зоркая О.Н. // Журн. структ. химии. 1998.
  Т. 39. С. 126.
- Банару А.М. // Вестн. Моск. ун-та. Сер. 2. Химия. 2009. Т. 50. С. 100.

где излом на графике зависимости собственных значений линейных комбинаций числовых переменных (компонент) в некотором массиве данных соответствует числу компонент, наиболее полно описывающих этот массив (главных компонент) [16]. Можно заключить, что число наиболее сильных межмолекулярных контактов в кристаллической структуре стремится принять свое наименьшее значение, которое в точности равно ККЧ.

Авторы выражают признательность В.В. Измеру за предоставленный объект исследования.

- 9. *Лорд* Э.Э., *Банару А.М.* // Вестн. Моск. ун-та. Сер. 2. Химия. 2012. Т. 53. С. 81.
- APEX II software package. Bruker AXS Inc. Madison. WI-53719. USA, 2005.
- 11. Sheldrick G.M. SADABS. Bruker AXS Inc. Madison. WI-53719. USA, 1997.
- 12. Sheldrick G.M. SHELXTL. Structure Determination Software Suite. 5.10. Bruker AXS Inc. Madison. WI-53719. USA, 1998.
- 13. *Macrae C.F., Bruno I.J., Chisholm J.A. et al.* // J. Appl. Cryst. 2008. Vol. 41. P. 466.
- 14. Gavezzotti A., Filippini G. // J. Phys. Chem. 1994. Vol. 98. P. 4831.
- 15. Bondi A. // J. Phys. Chem. 1964. Vol. 68. P. 441.
- Pomerantsev A.L., Rodionova O.Ye. // J. Chemometrics. 2012. Vol. 26. P. 299.

Поступила в редакцию 25.05.16

# CRYSTAL STRUCTURE OF 9-(5,5-DIMETHYL-2,4,5,6-TETRAHYDRO-1*H*-PHENALEN-2-YL)-5,5,9-TRIMETHYL-5,6,8,9-TETRAHYDROCYCLOPENT A[*A*]PHENALEN-10(4*H*)-ONE

## A.M. Banaru\*, A.F. Smol'yakov

(Division of Physical Chemistry; \*e-mail: banaru@phys.chem.msu.ru)

By means of X-ray crystallography the structure of 9-(5,5-dimethyl-2,4,5,6-tetrahydro-1*H*-phenalen-2-yl)-5,5,9-trimethyl-5,6,8,9-tetrahydrocyclopenta[*a*]phenalen-10(4*H*)-one was determined. In atom-atomic approach for the crystal structure a calculation of intermo-lecular interaction energies was performed. The character of crystal structure and the structural subclass were derived.

**Key words:** X-ray diffraction, intermolecular interaction energy, structural subclass, critical coordination number.

Сведения об авторах: Банару Александр Михайлович – ст. преподаватель кафедры физической химии химического факультета МГУ, канд. хим. наук (banaru@phys.chem.msu.ru); Смольяков Александр Федорович – науч. сотр. ИНЭОС РАН, канд. хим. наук (rengenhik@gmail.com).