УДК 543.51 + 547.836

ОСОБЕННОСТИ МАСС-СПЕКТРОВ ЗАМЕЩЕННЫХ ПИРРОЛОХИНОЛИНОВ

С.А. Ямашкин¹*, П.Б. Терентьев¹, М.А. Юровская²

(¹Мордовский государственный педагогический институт имени М.Е. Евсевьева; ²Московский государственный университет имени М.В.Ломоносова; *e-mail: yamashk@yandex.ru)

Приведены и проанализированы результаты масс-спектрометрических исследований серии различно замещенных изомерных пирроло[2,3-g], [3,2-f], [3,2-g], [2,3-f]хинолинов. Установлено, что ангулярно построенные пирролохинолины с объемными *пери*-заместителями менее устойчивы в условиях электронной ионизации, чем соответствующие изомеры линейного строения. Различия в величинах отношения интенсивности пика молекулярного иона к полному ионному току, выраженного в процентах (W_M) зависят от стерических требований *пери*-расположенных групп в угловых системах. Полученные данные дают возможность идентифицировать строение получающихся изомерных трициклических гетеросистем. Предложена схема масс-спектрального распада метил-, фенил-, метокси-, гидрокси- и этоксикарбонилзамещенных пирролохинолинов.

Ключевые слова: масс-спектральный распад, пирроло[2,3-*g*/хинолины, пирроло[3,2-*f*] хинолины, пирроло[3,2-*g*]хинолины, пирроло[2,3-*f*]хинолины.

В настоящее время продолжает развиваться научное направление по разработке методов синтеза замещенных пирролохинолинов на основе аминоиндолов, заявленное и закрепленное авторским свидетельством СССР № 548608. Метод заключается в анелировании пиридинового фрагмента к бензольному кольцу индольного бицикла. При этом в случае 5- и 6-аминоиндолов с двумя свободными *орто*-положениями возникает проблема доказательства строения получающихся различно сочлененных изомерных трициклических гетеросистем.

Мы провели анализ масс-спектральных данных серии замещенных пирролохинолинов, чтобы выявить особенности распада в условиях электронной ионизации и возможности применения данного метода для идентификации их структуры. Полученные нами результаты анализа фрагментации молекулярных ионов трифторметилзамещенных пирролохинолинов, синтезированных на основе аминоиндолов, опубликованы в работах [1, 2]. В предлагаемом сообщении анализируется масс-спектральный распад серии различно сочлененных метил-, фенил-, метокси-, гидрокси-, этоксикарбонилзамещенных пирролохинолинов **1–4** (схема 1, табл. 1).

Пирролохинолины в зависимости от характера заместителей обладают разной устойчивостью в условиях электронной ионизации. Наибольшие значения величины отношения интенсивности пика молекулярного иона к полному ионному току (W_M) составляют 62-75%. Как правило, наиболее интенсивный пик молекулярного иона в масс-спектрах имеют соединения с фенильными заместителями. Увеличение числа метильных заместителей, а также присутствие метоксигруппы снижают стабильность молекулы в условиях электронной ионизации. Значение *W*_м уменьшается также при введении в молекулу этоксикарбонильного заместителя. Для таких пирролохинолинов величины $W_{\rm M}$ находятся в пределах 27-37%. Наименее стабильны в условиях электронной ионизации соединения, имеющие одновременно этоксикарбонильную и гидроксильную группы. В масс-спектрах этих пирролохинолинов пик молекулярного иона мало интенсивен и его доля в полном ионном токе составляет не более 17-20%. Различаются также величины $W_{\rm M}$ изомерных пирролохинолинов. Как видно из табл. 1, для большинства линейных пирролохинолинов (1, 3) характерны большие значения $W_{\rm M}$, т.е. большая устойчивость в условиях электронной ионизации, чем для соответствующих угловых изомеров (2, 4). Степень различия величин $W_{\rm M}$ зависит от пространственных требований пери-расположенных групп R₃-R в угловых пирролохинолинах. Наиболее существенные различия значений $W_{\rm M}$ в изомерных парах имеют молекулы, в которых пери-заместителями в угловых структурах выступают

Ph-Me-, Me-Me-, Ме-Н-группы. Величины W_м Н-Н-пери-замещенных ангулярных пирролохинолинов незначительно отличаются от значений *W*_м соответствующих линейных структур. Пирролохинолин углового строения 2a с Ph-H-nepuзаместиталями даже немного устойчивее в условиях электронной ионизации, чем линейный изомер 1а. Масс-спетральные данные согласуются с обнаруженным нами ранее специфическим пространственным пери-влиянием заместителей в положениях 3 и 1 индольного ядра на образование пирролохинолинов 2, 4 с угловым сочленением колец из 5- и 6-аминоиндолов как более напряженных по сравнению с линейными изомерами 1, 3. Различия в величинах $W_{\rm M}$ изомерных пирролохинолинов дают возможность судить об их структуре. Некоторые изомеры из рассматриваемой серии различаются не только по устойчивости в условиях электронной ионизации, но и по другим критериям.

Распад молекулярных ионов пирролохинолинов, как линейных, так и угловых, в отсутствие одновременно *орто*-расположенных гидроксильной и этоксикарбонильной групп в молекуле в условиях электронной ионизации заключается в характерном для соединений, содержащих моно- и полиметилированный индольный фрагмент [3], элиминировании радикалов H (Φ_1) и CH₃ (Φ_3), сопровождающемся, вероятно, перегруппировкой в пиридохинолиновую структуру. Основные направления массспектрометрического распада соединений без *орто*-расположенных гидроксильной и этоксикарбонильной групп в молекуле представлены на схеме 2.

В масс-спектрах пирролохинолинов **3в**, **3г** с метоксигруппой в бензольном кольце доля ионов $[M-CH_3]^+$ (Φ_3) в полном ионном токе значительно больше, чем у соединений **4в**, **4г**. Кроме того, в масс-спектрах метоксипирролохинолинов наблюдаются ионы $[M-CHO]^+$ (Φ_2), интенсивность которых больше для **4в**, **4г**. Вероятно, это обусловлено иным расположением метоксигруппы в бензольном кольце молекулы, поэтому пирролохинолины ведут себя как 5- и 7-метокси-6-нитроиндолы [4].

Фрагментация молекулярных ионов пирролохинолинов **1д–4**д определяется полиметилиндольной чстью молекулы и наличием этоксикарбонильной группы. Она протекает по следующим основным направлениям: элиминирование радикалов H и CH₃ с образованием ионов $[M-H]^+$ $(\Phi_1), [M-CH_3]^+ (\Phi_3)$, элиминирование молекулы этилена с образование ионов $[M-C_2H_4]^+$. (Φ_5) ,

	~					1
а	0	Л	И	Π	а	

	or o								-		
Соединение	R	R ₁	R ₂	R ₃	R ₄	R ₅	R ₆	Wм		$I_{\rm oth.}$	
									Φ_1	Φ_2	Φ_3
1a	Н	Ph	Н	Ph	Н	_	Н	74,8	14,7	_	0,5
2a	Н	Ph	Н	Ph	Н	Н	Н	75,9	12,9	_	2,7
16	Me	Ph	Н	Ph	Н	_	Н	74,4	13,6	_	3,2
26	Me	Ph	Н	Ph	Н	Н	Н	62,9	13,6	_	7,0
1в	Me	Me	Н	Me	Me	_	Н	66,1	25,0	_	8,9
2в	Me	Me	Н	Me	Me	Н	Н	59,9	30,9	_	9,3
1г	Me	Me	Н	Me	Me	_	Me	71,2	_	_	16,2
2г	Me	Me	Н	Me	Me	Н	Me	40,4	11,3	_	35,3
1д	Me	Me	CO ₂ Et	Н	Н	_	Н	36,6	2,2	_	_
2д	Me	Me	CO ₂ Et	Н	Н	Н	Н	34,2	2,2	_	_
3a	Н	Me	Н	Me	Н	_	_	65,3	24,6	_	9,9
4a	Н	Me	Н	Me	Н	_	_	62,8	26,4	_	7,7
36	Н	Ph	Н	Ph	Н	_	_	78,2	12,5	_	3,0
4б	Н	Ph	Н	Ph	Н	_	_	62,5	13,5	_	7,0
3в	Н	Ph	Н	Ph	OMe	_	_	70,0	_	3,5	7,1
4в	Н	Ph	Н	Ph	OMe	_	_	31,8	31,8	11,0	1,1
3г	Н	Me	Н	Me	OMe	_	_	36,8	7,3	1,1	8,0
4Γ	Н	Me	Н	Me	OMe	-	_	24,3	32,9	12,4	1,3
3д	Н	Me	CO ₂ Et	Н	OMe	_	-	37,0	2,1	-	-
4д	Н	Me	CO ₂ Et	Н	OMe	_	_	26,8	27,2	_	_
3e	Н	Н	CO ₂ Et	ОН	OMe		_	20,3	_	_	8,4
4e	Н	Н	CO ₂ Et	ОН	OMe	_	_	21,1	_	_	9,5
4ж	Н	Н	CO ₂ Et	ОН	Me	_	_	19,7	_	_	_
43	Me	Н	CO ₂ Et	OH	Me			17,9	_	_	_

Значение W_М и I_{отн.} (%) для характеристических фрагментных ионов в масс-спектрах соединений 1-4

Обозначения: $W_{\rm M}$ – отношение интенсивности пика молекулярного иона к полному ионному току, выраженное в процентах; $I_{\rm orm.}$ – отношение интенсивности пика фрагментного иона к полному ионному току, выраженное в процентах.

 $[M-H-C_2H_4]^+$ (Φ_6), последовательное элиминирование радикала OC_2H_5 и молекулы CO с образованием иона $[M-C_2H_5OCO]^+$ (Φ_7).

В фрагментации молекулярных ионов изомерных метоксиэтоксикарбонилпирролохинолинов (**3**д, **4**д) имеются значительные различия. Так, для соединения **4**д в отличие от **3**д на порядок больше интенсивность иона Φ_1 и соответственно значительно меньше отношение интенсивностей Φ_5/Φ_6 . Это, вероятно, связано с тем, что в разных положениях молекулы влияние группы OCH_3 на стабилизацию ионов Φ_1 и Φ_6 различно.

Как уже отмечалось, пирролохинолины **3е**, **4е**, **4ж**, **43**, имеющие *орто*-расположенную этоксикарбонильную и гидроксильную группы, наиболее подвержены распаду в условиях электронной ионизации. Их масс-спектры отличаются от масс-спектров всех остальных пирролохинолинов, рассмотренных выше, отсутствием пиков

	I _{oth.}								
Соединение	Φ_4	Φ_5	Φ_6	Φ_7	Φ_8	Φ_9	Φ_{10}		
1д	_	13,5	8,9	6,0	_	_	_		
2д	_	12,5	10,0	5,8	_	_	_		
3в	1,8	_	_	_	_	_	_		
4в	1,9	_	_	_	_	_	_		
3г	12,6	_	_	_	_	_	_		
4Γ	3,3	_	_	_	_	_	_		
3д	_	7,9	5,8	2,6	_	_	-		
4д	_	3,5	18,2	2,7	_	_	_		
3e	_	_	_	_	42,4	8,5	1,1		
4e	_	_	_	_	45,1	1,8	7,7		
4ж	_	_	_	_	38,6	7,3	_		
43	_	_	_	_	35,7	7,1	_		

Схема 2

(R), (R₆) для соединений 1, 2; CH₃, R для соединений 3, 4.

ионов $[M-H]^+$ (Φ_1) и $[M-CH_3]^+$ (Φ_3). Основным направлением масс-спектрального распада для **3e** и **4e**, **4ж**, **4**3 является элиминирование молекулы этилового спирта с образованием иона $[M-C_2H_5OH]^+$ (Φ_8), который и имеет в большинстве масс-спектров наибольшую интенсив-

ность (схема 3). Это согласуется с распадом соединений, имеющих в ароматическом кольце *орто*-расположенные этоксикарбонильную и гидроксильную группы [5, 6]. Дальнейшее образование ионов протекает путем элиминирования фрагментов от иона Φ_8 . По интенсивности пиков

Схема З

Таблица 2

	T							
Соединение	Значение <i>m/z</i> пиков ионов (относительная интенсивность в %)							
1a	335 (20,2) 167 (11,0) 159 (1,3)	334 (100) 166,5 (2,5)	333 (23,6) 166 (5,8)	319 (0,7) 165 (1,9)	318 (0,9) 159,5 (4,8)			
2a	335 (25,0) 167 (5,4) 159 (2,6)	334 (100) 166,5 (1,8)	333 (21,2) 166 (3,5)	319 (4,4) 165 (1,5)	318 (2,2) 159,5 (13,0)			
16	349 (20,8) 173,5 (1,0)	348 (100) 173 (3,7)	347 (22) 167 (1,5)	333 (5,2) 166,5 (5,2)	174 (4,6) 166 (9,1)			
26	349 (26,2) 174 (2,7) 166 (12,1)	348 (100) 173,5 (0,8)	347 (27,2) 173 (1,4)	333 (14,1) 167 (3,5)	332 (13,1) 166,5 (8,1)			
1в	239 (18,7)	238 (100)	237 (44,9)	223 (15,9)				
2в	239 (21,3)	238 (100)	237 (62,5)	223 (18,8)				
1r	253 (18,8)	252 (100)	237 (27)	126 (12)	118 (9)			
2г	253(18,4) 126 (20)	252 (96)	251 (32)	238 (17)	237 (100)			
1д	283 (24,6) 253 (30,3) 208 (12,3) 167 (16,4)	282 (100) 245 (11,5) 207 (12,3)	281 (7,4) 243 (11,5) 194 (7,4)	255 (13,1) 210 (8,3) 193 (7,4)	254 (45,9) 209 (20,5) 168 (23,8)			
2д	283 (24,6) 253 (32,8) 208 (13,9) 149 (24,6)	282 (100) 245 (12,3) 194 (9,8)	281 (8,2) 243 (11,5) 193 (17,2)	255 (9,8) 210 (8,2) 192 (7,4)	254 (45,9) 209 (21,3) 167 (17,2)			

Масс-спектры соединений 1-4

Окончание табл. 2

Соединение	Значение <i>m/z</i> пиков ионов (относительная интенсивность в %)							
3a	225 (13,9) 112 (4,0)	224 (100) 111,5 (1,8)	223 (42,9) 104,5 (2,1)	209 (17,5) 104 (1,4)	208 (2,9)			
4a	225 (14,0) 112 (5,6)	224 (100) 111,5 (3,5)	223 (48,0) 104,5 (0,3)	209 (14,0) 104 (2,8)	208 (2,8)			
36	349 (22,6) 174 (4,7)	348 (100) 173,7 (0,7)	347 (20,6) 166,5 (8,5)	333 (5,0) 166 (8,5)	332 (1,4)			
46	349 (26,2) 174 (2,7) 166 (12 1)	348 (100) 173, 5 (0,8)	347 (27,2) 173,5 (0,8)	333 (14,1) 167 (3,5)	332 (13,1) 166,5 (8,1)			
Зв	379(19,2) 335 (3)	378 (100) 319 (1,0)	363 (12,0) 189 (15,0)	349 (6,0) 181,5 (7,0)	348 (5,0) 174,5 (3,0)			
	172,5 (6,0)	159,5 (1,0) 378 (81.4)						
4в	349 (34,6) 319 (5,1) 173,5 (6,1)	348 (11,8) 189 (5,9) 158 (3,8)	377 (100) 347 (13,5) 188 (5,8)	363 (3,4) 335 (5,9) 181,5 (2,5)	350 (8,4) 333 (8,4) 174,5 (9,3)			
3г	255 (16,9) 223 (3,4) 196 (8,5)	254 (100) 212 (5,9) 195 (5,1)	253 (23,3) 211 (40,0) 127 (23,7)	239 (25,4) 210 (40,0) 119,5 (3,4)	225 (3,4) 209 (5,9) 104,5 (22,9)			
4Γ	255 (11,2) 226 (6,7) 196 (8,4) 126,5 (4,2)	254 (62,6) 225 (37,6) 195 (5,6) 119,5 (1,7)	253 (100) 223 (28,0) 181 (3,9) 112,5 (9,6)	239 (3,9) 211 (10,1) 167 (3,9) 104,5 (7,3)	238 (3,4) 209 (16,8) 127 (4,5)			
3д	313 (19,5) 283 (18,6) 239 (8,5) 194 (8,5) 112 (7,6)	312 (100) 269 (18,6) 238 (5,1) 181 (5,1) 98 (6,8)	311 (6,7) 267 (8,5) 224 (6,8) 154 (5,9) 83 (5,0)	285 (5,1) 253 (7,7) 223 (6,8) 142 (6,8) 77 (5,1)	284 (25,4) 241 (12,7) 195 (8,5) 119 (8,5) 51 (5,0)			
4д	313 (22,0) 283 (67,0) 255 (23,5) 209 (5,6) 167 (3,0)	312 (76,5) 281 (9,5) 253 (12,8) 196 (3,5) 127 (3,0)	311 (100) 269 (3,4) 241 (5,6) 195 (7,3) 104 (3,0)	297 (3,4) 267 (7,3) 240 (5,0) 193 (5,0)	284 (12,8) 256 (3,4) 239 (7,3) 181 (3,5)			
Зе	315 (10,0) 253 (5,0) 197 (14,0) 113 (2,0)	314 (38,0) 240 (2,0) 181 (1,0) 99 (1,0)	269 (20,0) 225 (5,0) 169 (4,0) 77 (2,0)	268 (100) 212 (20,0) 154 (1,0) 63 (1,0)	267 (10,0) 211 (2,6) 134 (14,0) 53 (3,0)			
4e	315 (7,9) 240 (1,0) 183 (1,0) 105 (3,0)	314 (39,0) 225 (4,0) 169 (3,0) 77 (3,0)	269 (21,0) 212 (4,0) 159 (2,0) 53 (3,0)	268 (100) 211 (17,0) 134 (15,0) 22 (6,0)	253 (5,0) 197 (11,0) 120 (4,0)			
4ж	299 (9,0) 237 (2,0) 181 (7,0) 115 (2,0)	298 (42,0) 225 (7,9) 168 (3,0) 98 (1,0)	253 (20,0) 224 (19,0) 154 (4,0) 90 (1,0)	252 (100) 209 (1,0) 140 (1,0) 77 (2,0)	251 (10,0) 196 (35,0) 126 (9,0) 53 (1,0)			
43	313 (10,0) 262 (16,0) 210 (20,0) 141 (7,0)	312 (40,0) 251 (2,0) 195 (13,0) 133 (12,0)	298 (2,0) 239 (9,0) 182 (2,0) 115 (5,0)	267 (21,0) 238 (11,0) 168 (5,0) 91 (6,0)	266 (100) 223 (5,0) 153 (1,0) 51 (4,0)			

фрагментных ионов $[M-C_2H_5OH-CO-CO]^+$. (Φ_9) и $[M-C_2H_5OH-CO-CHO]^+$ (Φ_{10}) в масс-спектрах можно отличить изомерные соединения **3e** и **4e**. В то время как для линейно сочлененного пирролохинолина **3e** выше интенсивность пика Φ_9 для угловой системы **4e** преобладает распад с образованием ионов Φ_{10} .

Таким образом, масс-спектрометрически можно надежно отличать и идентифицировать пирролохинолины разных классов и с разными заместителями. Масс-спектрометрия помимо других

СПИСОК ЛИТЕРАТУРЫ

- 1 Степаненко И.С., Ямашкин С.А., Котькин А.И. // Успехи современного естествознания. 2016. № 8. С. 55.
- 2. Ямашкин С.А., Степаненко И.С, Котькин А.И. // Успехи современного естествознания. 2016. № 2. С. 76.
- 3. Хмельницкий Р.А. // ХГС. 1974. № 3. С. 291.

физико-химических методов (УФ-спектроскопия, спектроскопия ЯМР) вполне применима для оценки сочленения колец у пирролохинолинов.

Экспериментальная часть

Масс-спектры получены на масс-спектрометpax «MAT-112, MX-1303» и «Finnigan MAT INCOS-50» с прямым вводом образца в ионный источник при энергии ионизации 50 эВ, токе эмиссии 1,5 мА и температуре 70–250 °С. Результаты приведены в табл. 2.

- Терентьев П.Б., Хмельницкий Р.А., Соловьев О.А., Юдин Л.Г., Кост А.Н., Зинченко Е.Я. // ХГС. 1978. № 8. С. 1070.
- 5. *Терентьев П.Б.* Масс-спектрометрия в органической химии. М., 1979. С. 115.
- 6. *Лебедев А.Т.* Масс-спектрометрия в органической химии. М., 2010. С. 269.

Поступила в редакцию 15.03.18 После доработки 15.04.18 Принята к публикации 05.09.18

FEATURES OF MASS-SPECTRA OF SUBSTITUTED PYRROLOQUINOLINES

S.A. Yamashkin¹*, P.B. Terent'ev ¹, M.A. Yurovskaya²

(¹ Mordovian State Pedagogical Institute named after M.E. Evsevyev; ² Moscow State University; *e-mail: yamashk@yandex.ru)

The results of mass-spectrometric studies of a series of differently substituted isomeric pyrrolo [2,3-g], [3,2-f], [3,2-g], [2,3-f] quinolines are presented and analyzed. It has been established that the angularly constructed pyrroloquinolines with volume *peri*-substituents are less stable under the action of an electron impact than the corresponding isomers of the linear structure. The difference in the values of $W_{\rm M}$ depends on the steric requirements of the *peri*-located groups in the angular systems. The data obtained make it possible to identify the structure of the resulting isomeric tricyclic heterosystems. A scheme for the mass spectrometric decomposition of methyl-, phenyl-, methoxy-, hydroxyl-, ethoxycarbonyl-substituted pyrroloquinolines.

Key words: mass-spectrometric decomposition, pyrrolo[2,3-g]quinolines, pyrrolo[3,2-f] quinolines, pyrrolo[3,2-g]quinolines, pyrrolo[2,3-f]quinolines.

Сведения об авторах: Ямашкин Семен Александрович – профессор кафедры химии, технологии и методик обучения естественно-технологического факультета Мордовского государственного педагогического института им. М.Е. Евсевьева, докт. хим. наук, профессор (yamashk@yandex. ru); Юровская Марина Абрамовна – вед. науч. сотр. кафедры органической химии химического факультета МГУ, докт. хим. наук, профессор (ymar@org.chem.msu.ru).