УДК 546.562+547.288.3+544.175

СИНТЕЗ И КРИСТАЛЛИЧЕСКАЯ СТРУКТУРА КОМПЛЕКСОВ НИКЕЛЯ(II) И ЦИНКА(II) С ПРОИЗВОДНЫМИ БЕНЗОИЛУКСУСНОГО АЛЬДЕГИДА

М.А. Турсунов*, Б.Б. Умаров, К.Г. Авезов

(Бухарский государственный университет; *e-mail: tursunovma@mail.ru)

Синтезированы комплексы Ni(II) и Zn(II) состава $ML^n \cdot NH_3$ (n = 1-3) на основе продуктов конденсации бензоилуксусного альдегида с гидразидами ароматических кислот ($H_2L^1-H_2L^3$). Полученные комплексы изучены методами элементного анализа, ИК- и ПМР-спектроскопии. Строение комплекса NiL²·Py определено методом рентгеноструктурного анализа (ССDС № 1508698).

Ключевые слова: кетоальдегид, ацилгидразин, ароилгидразон, пяти- и шестичленная псевдоароматическая система металлоциклов, рентгеноструктурный анализ.

Производные ароилгидразонов с 1,3-дикарбонильными соединениями типа кетоальдегидов представляют большой интерес как соединения, потенциально существующие в прототропных кольчато-цепных равновесных формах [1–3]. Это обусловило выбор авторами настоящей статьи ароилгидразонов в качестве нуклеофилов.

Синтезированы комплексные соединения $ML^n \cdot NH_3$ (M = Ni, M = Zn; n = 1-3) на основе замещенных ароилгидразонов бензоилуксусного альдегида ($H_2L^1-H_2L^3$). Полученные соединения диамагнитны, растворимы в хлороформе, бензоле, пиридине и практически не растворимы в воде. Данные ИК- и ПМР-спектров указывают на плоско-квадратное строение комплексных соединений.

Экспериментальная часть

Комплексные соединения металлов Ni(II) и Zn(II) с лигандами $H_2L^1-H_2L^3$ синтезированы путем смешивания спиртовых растворов соответствующих лигандов и водно-аммиачного раствора ацетатов металлов [1–4].

Синтез комплекса NiL¹·NH₃. К раствору 1,33 г (0,005 моль) бензоилгидразона бензоилуксусного альдегида (H_2L^1), полученного ранее согласно работам [3, 4], в 20 мл ЕtOH постепенно добавляли горячий раствор 1,25 г (0,005 моль) ацетата никеля(II) в 15 мл концентрированного аммиака. Из полученного раствора красного цвета через 5–10 мин выпадали поликристаллы красного цвета, которые отфильтровывали, промывали водой, этиловым спиртом и высушивали в вакуумэксикаторе над P_2O_5 . Выход комплекса NiL¹·NH₃ составил 1,23 г (86%). Аналогичным способом синтезированы комплексы $ZnL^1 \cdot NH_3$ с бензоилгидразоном бензоилуксусного альдегида (H_2L^1) , $NiL^2 \cdot NH_3$ с *пара*метилбензоилгидра-зоном (H_2L^2) и $NiL^3 \cdot NH_3$ с *орто*-оксибензоилгидразоном (H_2L^3) бензоил-уксусного альдегида.

Синтез комплекса NiL¹·Py. В 2 мл Ру растворяли 0,68 г NiL¹·NH₃ и нагревали раствор в течение 10 мин. Через 10 ч к реакционной смеси в целях высаливания полученного продукта добавляли 25 мл диэтилового эфира. Выпавший осадок комплекса Ni(II) с бензоилгидразоном бензоилуксусного альдегида, имевшего красный цвет, отделяли, промывали спиртом и эфиром и высушивали на воздухе. Выход комплекса NiL¹·Py составлял 0,66 г.

Синтез комплекса ZnL².*Ру* проведен аналогичным способом.

Выходы и результаты элементного анализа полученных внутрикомплексных соединений Ni(II) и Zn(II) приведены в табл. 1.

Перекристаллизацией NiL²·Py из смеси этанола и хлороформ (1:1) получили монокристаллы $C_{22}H_{19}N_3O_2Ni$, пригодные для рентгеноструктурного анализа (PCA). PCA проведен на автоматическом дифрактометре «Хсаlibur» (СиК_а-излучение, $\lambda = 1,54184$ Å, графитовый монохроматор, ω -сканиравание, $2\theta_{\text{макс}} = 75,9^\circ$). Структура комплекса NiL²·Py расшифрована прямым методом. При расшифровке и уточнении (МНК в анизотропном приближении до R = 0,036 и $R_w = 0,106$) использованы 2607 независимых отражений с $F^2 > 2\sigma$.

Результаты и их обсуждение

В настоящей работе обсуждаются строение и свойства комплексных соединений, полученных

Соединение	Брутто-формула	Выход, %	<i>Т</i> _{пл.} , ^о С	Найдено / вычислено, %					
				М	С	Н	Ν		
$NiL^1 \cdot NH_3$	$C_{16}H_{15}N_{3}O_{2}Ni$	86	158	17,21/17,26	56,54/56,52	4,41/4,45	12,39/12,36		
NiL ¹ ·Py	$C_{21}H_{17}N_3O_2Ni$	74	166	14,56/14,60	62,69/62,73	4,23/4,26	10,48/10,45		
NiL ² ·NH ₃	C ₁₇ H ₁₇ N ₃ O ₂ Ni	58	178	16,53/16,58	57,62/57,67	4,79/4,84	11,90/11,87		
NiL ² ·Py	$C_{22}H_{19}N_3O_2Ni$	56	182	14,07/14,11	63,46/63,50	4,56/4,60	10,13/10,10		
NiL ³ ·NH ₃	C ₁₇ H ₁₇ N ₃ O ₄ Ni	76	193	15,15/15,20	52,83/52,89	4,39/4,44	10,93/10,89		
$ZnL^1 \cdot NH_3$	C ₁₆ H ₁₅ N ₃ O ₂ Zn	63	172	18,82/18,86	55,38/55,43	4,31/4,36	12,14/12,12		
ZnL ² ·Py	$C_{16}H_{15}N_{3}O_{2}Zn$	68	185	15,36/15,40	65,47/65,56	4,48/4,50	9,98/9,95		
		1	1			1			

Выходы и результаты элементного анализа комплексных соединений Ni(II) и Zn(II)

Параметры спектров ПМР комплексов Ni(II) и Zn(II) в растворе ДМСО-d₄ (б, м.д.)

Соединение	Сигналы про- тонов R, м	H–C=N	-CH=	Сигналы протонов R^1	Сигналы протонов А	
NiL ^{1.} NH ₃	7.29, 7.66	5.95	5.86	7.29 м; 7.66 м	_*	
NiL ^{1.} Py	7.34, 7.66	6.04	5.98	7.34 м; 7.66 м	7.74 м; 8.08 м; 8.95 м	
ZnL ^{1.} NH ₃	7.25, 7.72	6.38	5.32	7.25 м; 7.72 м; 7.95 м	1.75	
NiL ² ·NH ₃	7.23, 7.69	6.35	5.34	7.23 м; 7.70 м; 7.93 м	1.77	
NiL ^{2.} Py	7.34, 7.66	6.04	5.98	7.34 м; 7.66 м	7.74 м; 8.08 м; 8.95 м	
ZnL ² ·Py	7.32, 7.64	6.03	5.97	7.35 м; 7.67 м	7.75 м; 8.09 м; 8.94 м	
NiL ³ ·NH ₃	7.25, 7.48**	6.34	5.28	7.25 м; 7.48 м	1.86	

* Сигналы не наблюдаются из-за обмена координированного аммиака молекулами растворителя; ** сигналы протонов двух ароматических колец перекрываются, приведены центры сигналов.

на основе продуктов конденсации бензоилуксусного альдегида с гидразидами *пара*-замещенных ароматических кислот.

На схеме 1 показан синтез комплексов состава $ML \cdot NH_3$ (II) ($M^{2+} = Ni$, $M^{2+} = Zn$) [1–3] путем взаимодействия водно-аммиачного раствора ацетата металлов со спиртовыми растворами эквимолярного количества лигандов H_2L (I). В результате анализа ИК- и ПМР-спектров установлено, что комплексы представляют собой плоско-квадратный полиэдр (II).

В табл. 1 представлены состав и строение полученных комплексов, выявленные с помощью методов элементного анализа ИК- и ПМРспектроскопии.

Отметим, что аммиачные комплексы хорошо растворяются в органических растворителях и не

растворимы в воде. При растворении аммиачного комплекса $NiL^1 \cdot NH_3$ в минимальном количестве Ру с последующим высаливанием диэтиловым эфиром получен комплекс $NiL^1 \cdot Py$ [2–5].

В ИК-спектрах комплексов наблюдаются полосы поглощения в областях 3375–3380, 3320–3330, 3240–3250 и 3150 см⁻¹, которые следует отнести к симметричным и антисимметричным валентным колебаниям координированной молекулы NH₃ [1, 6]. В ИК-спектре комплекса NiL¹·Py появляется полоса колебаний около 1600 см⁻¹, отнесенная к $v_{(C=N)}$ Ру и отсутствует полоса поглощения выше 1640 см⁻¹, отвечающая валентным колебаниям карбонильной группы. Появление полос поглощения средней и сильной интенсивности в областях 1580–1585, 1530–1540, 1470–1480, 1420– 1430 и 1395–1400 см⁻¹ обусловлено валентными

Таблина 1

Таблица 2

Схема

$$\begin{split} M &= Ni(II), M = Zn(II); A = NH_3, A = Py; R = R^1 = C_6H_5 (NiL^1 \cdot NH_3), (NiL^1 \cdot Py), (ZnL^1 \cdot NH_3); R = C_6H_5, \\ R^1 &= 4 - CH_3C_6H_4, (NiL^2 \cdot NH_3), (NiL^2 \cdot Py), (ZnL^2 \cdot Py); R = 4 - CH_3C_6H_4, R^1 = 2 - OHC_6H_4, (NiL^3 \cdot NH_3). \end{split}$$

Параметр	Значение			
М	416,11			
Температура	293 К			
Сингония	Триклин			
Пр. гр.	P-1			
<i>a</i> , Å	9,3151 (9)			
<i>b</i> , Å	10,5675 (11)			
<i>c</i> , Å	11,9266 (7)			
α, град	112,030 (7)			
β, град	92,227 (6)			
ү, град	115,341 (10)			
V, Å ³	955,33 (17)			
Ζ	2			
$ρ_{\rm выч.}$, г/см ³	1,446			
μ, мм ⁻¹	1,649			
Размеры кристалла, мм	0,5×0,4×0,3 мм			
θ область, град	4,1–75,9			
Область h	$-11 \le h \le 11$			
Область k	$-13 \le k \le 13$			
Область <i>l</i>	$-14 \le l \le 8$			
Собрано отражений	6440			
Независимых отражений	3836			
R _{int}	0,036			
Отражений с I > 2 (I)	2607			
Число уточняемых параме-	255			
тров	0,975			
$GOOF(F^2)$	0,045; 0,106			
$R_1, wR_2(I > 2\sigma(I))$	0,0447; 0,1063			
R_1, wR_2 (все отражения)	0,33; -0,24			
$\Delta \rho_{\text{макс}}, \Delta \rho_{\text{мин}} (\text{\AA}^{-3})$				

Таблица 3 Основные кристаллографические данные структуры NiL²·Py

Атом и его отклонение, Å										
C(1) -0,0076	C(2) 0,0048	C(3) 0,0026	C(4) -0,0070	C(5) 0,0041	C(6) 0,0032	C(7)* 0,0092	O(1)* -0,5083	C(8)* 0,5332	C(9)* 0,5633	
C(11) 0,0037	C(12) -0,0018	C(13) -0,0034	C(14) 0,0067	C(15) -0,0049	C(16) -0,0003	C(10)* 0,0461	C(17)* 0,0322	N(2)* -0,1201	O(2)* 0,2799	
N(3) 0,0032	C(18) 0,0042	C(19) -0,0077	C(20) 0,0040	C(21) 0,0032	C(22) -0,0070	_	_	_	_	
Ni(1) -0,0134	O(1) -0,0137	O(2) -0,0155	N(1) 0,0220	N(3) 0,0206	_	_	_	_	_	

Отклонение атомов от «средних» плоскостей в структуре $NiL^2 \cdot Py$

*Атомы, не включенные в расчет данной плоскости.

a

Кристаллическая структура комплексного соединения NiL2·Py (a) и молекулярная упаковка ячейки (б)

Таблица 4

и валентно-деформационными колебаниями сопряженной системы связей пяти- и шестичленного металлоциклов. Частота валентных колебаний связи С–О понижается на 15-25 см⁻¹, в то же время значение частоты связи С=N повышается на 5-10 см⁻¹, что свидетельствует о координации через атомы кислорода [7–9].

Параметры спектров ПМР растворов комплексов Ni(II) в ДМСО-d₆ приведены в табл. 2. Для однозначного подтверждения выводов о плоско-квадратном строении полученных комплексов Ni(II) и Zn(II), сделанных по результатам ИК- и ПМРспектроскопии, были выращены монокристаллы NiL²·Py путем перекристаллизации из смеси EtOH и CHCl₃. Основные кристалло-графические данные и результаты уточнения структуры NiL²·Py приведены в табл. 3.

Дважды депротонированный остаток лиганда H_2L^2 координирован атомом Ni(II) через два атома кислорода и атом азота гидразонной части молекулы. Четвертое место в плоском квадрате занимает донорная молекула Ру (рис. 1, *a*).

Значения длины связей Ni–O(1) (1,826(2) Å), Ni–O(2) (1,835(2) Å) Ni–N(1) (1,823(3) Å) Ni–N(3) (1,926(3) Å) в кристалле комплекса близки к найденным для координационного полиэдра $[N_2O_2]$ кристалла в изоструктурных комплексах Ni(II) с бензоилгидразоном этилового эфира 5,5-диметил-2,4-диоксогексановой кислоты [4, 5, 10, 11], с бензоилгидразоном метилового эфира 5,5-диметил-2,4-диоксогексановой кислоты [12,13-20] и с бензоилгидразоном трифторацетил-ацетона [7,

СПИСОК ЛИТЕРАТУРА

- 1. Пакальнис В.А., Зерова И.В., Якимович С.И., Алексеев В.В. // Химия гетероцикл. соед. 2013. № 3. С. 440.
- 2. *Якимович С.И., Зерова И.В. //* Журн. орг. химии. 1991. Т. 27. Вып. 5. С. 959.
- 3. Умаров Б.Б., Тошев М.Т., Саидов С.О. и др. // Коорд. химия. М., 1992. Т. 18. № 9. С. 980.
- 4. Умаров Б.Б. // Автореф. дис. ... докт. хим. наук. Ташкент, 1996.
- 5. Парпиев Н.А., Умаров Б.Б., Авезов К.Г. Производные перфторалкильных дикетонов и их комплексов. Ташкент, 2013.
- Zelenin K.N., Yakimovich S.I. // Targets in heterocyclic systems, Chemistry and Properties. 1998. Vol. 2. P. 207.
- 7. Тошев М.Т., Дустов Х.Б., Саидов С.О. и др. // Коорд. химия. М., 1992. Т. 18. № 12. С. 1184.
- 8. *Тошев М.Т., Юсупов В.Г., Дустов Х.Б., Парпиев Н.А.* Кристаллохимия комплексов металлов с гидразидами и гидразонами. Ташкент, 1994.
- 9. Умаров Б.Б., Авезов К.Г., Абдурахмонов С.Ф. и др. // Тез. докл. III Междунар. конф. по молекулярной

8, 12, 16-20]. Центральный атом никеля незначительно отклоняется от средней плоскости координированных атомов O(1),O(2),N(1),N(3). Большая разница между валентными углами O(1)NiN (1) (95,76(12) °) и N(1)NiO (2) (83,76(13) °) объясняется, на наш взгляд, наличием и размерами сопряженных пяти- и шестичленного металлоциклов вокруг иона-комплексообразователя, что хорошо согласуется с данными работ [8, 9, 14, 15, 17-20]. Атомы координированного полиэдра NiO(1)O(2) N(1)N(3) кристалла лежат в одной плоскости с точностью ±0,02 Å. Копланарные пятичленный (NiO(1)N(1)N(2)C(4)) и шестичленный (NiO(2) N(1)C(1)C(2)C(3)) металлоциклы сопряжены между собой и «плоские» в пределах 0,003-0,0220 Å (табл. 4).

Упаковка структурных единиц в кристалле молекулы NiL²·Py показана на рис. 1, δ . Один из атомов водорода координированной молекулы пиридина участвует в образовании водородной связи: внутримолекулярной (BMBC) C(18)–H(18)···O(2) 2,937(4) Å и межмолекулярной (ММВС) С(18)-H(18)…N(2) 3,437(4) Å, которая приводит к образованию центросимметричного димера. Молекулы расположены по центрированному мотиву таким образом, что пяти- и шестичленные металлоциклы образуют друг с другом псевдостопки. В молекуле имеется еще одна BMBC C(18)-H(18)···O(1) 2,861(3) Å, величина валентного угла которого равна 104,3°. Значения длины связей для этого фрагмента C(22)-H(22) и H(22)…O(1) равны соответственно 0,93 и 2,48 Å.

спектроскопии, СамГУ. 29-31 мая 2006. Самарканд, 2006. С. 105.

- Парпиев Н.А., Юсупов С.И., Якимович С.И., Шарипов X.Т. Ацилгидразоны и их комплексы с переходными металлами. Ташкент, 1988.
- 11. Умаров Б.Б., Авезов К.Г., Турсунов М.А. и др. // Коорд. химия. М., 2014. Т. 40. № 7. С. 415.
- 12. Agrawal A., Sharma K.M., Prasad R.N. // Pol. J. Chem. 2007. Vol. 81. N 12. P. 2081.
- 13. *Авезов К.Г.* Автореф. дис. ... докт. хим. наук. Ташкент, 2018.
- Tursunov M.A., Avezov K.G., Umarov B.B., Parpiev N.A. // Russian Journal of Coordination Chemistry. 2017. Vol. 43. N 2. P. 93.
- 15. Гайбуллаев Х.С., Пумпор К.Б., Якимович С. и др. // // Тез. докл. III Национальной конференции по применению рентгеновского, синхротронного излучений нейтронов и электронов «РСНЭ-2001» М., 21–25 мая 2001. С 58.
- 16. Коган В.А., Зеленцов В.В., Ларин Г.М., Луков В.В. Комплексы переходных металлов с гидразонами.

Физико-химические свойства и строение. М., 1990. 17. Умаров Б.Б., Турсунов М.А., Авезов К.Г. // Научный вестник БухГУ. 2014. № 1. С. 11.

- Умаров Б.Б., Турсунов М.А., Минин В.В. Комплексы с производными кетоальдегидов и кетоэфиров. Ташкент, 2016.
- 19. Ревенко М.Д., Симонов Ю.А., Дука Г.Г., Боурош П.Н. и др. // Коорд. химия. 2009. Т. 54. № 5. С. 756.
- 20. Avezov K.G., Yakimovich S.I., Umarov B.B., et al. // Russian Journal of Coordination Chemistry. 2011. Vol. 37. N 4. P. 275.

Поступила в редакцию 10.09.2018 Получена после доработки 10.11.2018 Принята к публикации 15.01.2019

SINTHESIS AND CRISTAL STRUCTURE OF NIKEL(II) AND ZINC(II) COMPLEXES WITH BENZOYLACETIC ALDEHYDE DERIVATIVES

M.A. Tursunov*, B.B. Umarov, K.G. Avezov

(Bukhara State University; *e-mail: tursunovma@mail.ru)

Ni(II) and Zn(II) complexes of composition $ML^{n} \cdot NH_{3}$ (n = 1-3) were synthesized on the basis of condensation products of benzoylacetic aldehyde with aromatic acid hydrazides $(H_{2}L^{1}-H_{2}L^{3})$. The resulting complexes were studied by elemental analysis, IR and NMR spectroscopy. The structure of completex NiL². Py is determined by the method of RSA (CIF file CCDC no. 1508698).

Key words: ketoaldehide, acylhidrazine, aroylhidrazone, five- and sixmembered, pseudoaromatic system of metallocycles, X-ray diffraction analysis.

Сведения об авторах: *Турсунов Мурод Амонович* – докторант Бухарского государственного университета (tursunovma@mail.ru); *Умаров Бако Бафоевич* – профессор Бухарского государственного университета, докт. хим. наук (umarovbako@mail.ru); *Авезов Кувондик Гиясович* – препод. Бухарского государственного университета, докт. философии по химическим наукам (avezovkg@mail.ru).