ХИМИЯ И ФИЗИКА ВЫСОКИХ ДАВЛЕНИЙ

УДК 541.41.74

СИНТЕЗ НОВЫХ ТЕРНАРНЫХ ГИДРИДОВ В СИСТЕМЕ Са-Ni(Co)-H₂ ПРИ ВЫСОКИХ ДАВЛЕНИЯХ

В.Н. Вербецкий, Э.А. Мовлаев, Б.И. Лазоряк

(кафедра химии и физики высоких давлений)

Изучено взаимодействие в системах CaH₂-Ni и CaH₂-Co при высоких давлениях и температурах (40-45 кбар, 873-1273 K). Установлено, что в обеих системах образуются новые гидридные фазы. На основании рентгенографического анализа предполагается, что эти новые соединения CaNiH₃ и CaCOH₃ имеют структуру перовскита.

В большинстве работ, посвященных синтезу сложных гидридов металлов, используется метод гидрирования интерметаллических соединений, сплавов или механических смесей компонентов. В то же время использование высоких давлений позволяет осуществить синтез новых соединений, не образующихся при обычных условиях.

В настоящей работе изучено взаимодействие в системах CaH₂-Ni и CaH₂-Co при высоких давлениях.

Как известно, в системе Ca-Ni-H₂ достаточно подробно изучено взаимодействие с водородом CaNi₅ [1-3]. В системе Ca-Co-H₂ до настоящего времени соединения не обнаружены.

В то же время, исходя из кристаллохимических представлений, можно было ожидать образования новых гидридов в этих системах.

В настоящей работе приведены результаты исследования взаимодействия в системах CaH₂-Ni и CaH₂-Co при высоких давлениях.

Экспериментальная часть

Гидрид кальция получен взаимодействием металлического кальция и водорода при температуре 873 К. Использованные никель и кобальт имели чистоту 99,99%. Взвешивание и приготовление образцов проводили в герметичном боксе в атмосфере сухого азота. Реакционную смесь готовили смешением порошков в агатовой ступке, прессовали в цилиндрические таблетки и помещали в камеру высокого давления. Методика синтеза при высоких давлениях реализована в аппарате типа "наковальни Бриджмена" с камерой типа "чечевица" (рабочий объем V ≈ 1 см³), изготовленной из литографского камня. В качестве материала, изолирующего вещество от графитового нагревателя, заполняющего свободное пространство камеры и передающего давление на образец, использовали хлорид натрия. После синтеза камеру высокого давления повторно помещали в бокс и образец механически тщательно очищали от хлорида натрия. Исследование фазового состава образцов образцов проводилась в кварцевой кювете под лавсановой пленкой.

Результаты и их обсуждение

Как показывают результаты исследований взаимодействий в системе CaH_2 -Ni при высоком давлении, приведенные в табл. 1, среди продуктов синтеза присутствует новая фаза (X-фаза). Наибольшее ее количество образуется при температуре 1100 K, однако получить эту фазу в чистом виде не удалось ни в одном опыте. После синтеза в продуктах реакции всегда остается часть исходных компонентов. Повышение температуры реакции приводит к образованию известных в системе Ca-Ni интерметаллических соединений состава CaNi₂ и CaNi₅.

Изменение соотношения CaH₂ и Ni в реакционной смеси не приводит к принципиально новым результатам. Фазовый состав продуктов реакции остается постоянным, но меняется относительное количество фаз. В системе CaH₂-Co в условиях высокого давления обнаружено образование новой фазы, которая, по-видимому, изоструктурна X-фазе, найденной в системе CaH₂-Ni. Количество этой фазы заметно меньше.

Нами проведен рентгенографический анализ Х-фазы на основании предположения, что эта фаза имеет состав CaNiH₃ и изоструктурна перовскиту (пр. гр. РмЗм). Дифрактограмму Х-фазы проиндицировали в предположении кубической сингонии с параметром $a = 3,549 \pm 0.001$ Å (в соединении с кобальтом $a = 3,535 \pm 0,002$ Å). Результаты индицирования дифрактограммы приведены в табл. 2. Для выявления положений атомов кальция и никеля в структуре CaNiH₃ рассчитывали интенсивность рефлексов для разных моделей расположения катионов по позициям. В качестве исходных данных использовали координаты атомов структуры СаТіОз [4]. Катионы Са размещали в позиции a: (0,0,0), а катионы Ni— в позиции b: (1/2, 1/2,1/2). Для такой модели R-фактор $(R_{I}=(|I_{3KC\Pi} - I_{BMY}|)/(I_{3KC\Pi}))$ имел значение 0,05. Другие варианты размещения катионов приводи-

Таблица 1

Исходный состав, CaH ₂ : Ni	Давление, кбар	Температура, К	Время, мин	Фазовый состав продуктов синтеза	
1:2	40	1123	60	основные компоненты: Х-фаза, Ni; присутствуют: CaNi2, CoNi5, CaH2	
1:2	40	1223	25	основные компоненты: Х-фаза, СаН2, Ni; присутствуют: CaNi2, CaNi5	
1:1	40	873	60	основные компоненты: CaH ₂ , Ni; присутствует <i>X</i> -фаза	
1:1	40	1073	180	основные компоненты: Х-фаза; присутствуют: CaH2, CaNi2, CaNi5	
1:1	40	1273	20	основные компоненты: Х-фаза, CaNi2, CaNi5; присутствуют: CaH2, Ni	
2:1	45	1073	120	основные компоненты: Х-фаза; присутствуют: CaH2, Ni	
2:1	45	1173	30	основные компоненты: X-фаза; присутствуют: CaH ₂ , Ni, CaNi ₂ , CaNi ₅	

Условия синтеза и фазовый состав продуктов реакции

Таблица 2

Индицирование рентгенограммы CaNiH₃

I/ I0	hki	d _{экс} Å	<i>d</i> выч Å
100	110	2,5081	2,5102
18	200	1,7744	1,7750
25	211	1,4487	1,4493
7	220	1,2547	1,2551
10	310	1,1220	1,1226
11	321	0,9493	0,9488

Таблица 3

Значения	межатомных	расстояний	В	гидридах
----------	------------	------------	---	----------

Соединение	Межатомное	Литература		
	Са-Н	Ni-H		
CaNiH3	2,5	1,78	_	
CaH ₂	2,24-2,66		[5]	
NiH	_	1,85	[6]	
Mg2NiH4	-	1,54	[7]	
CaNi5H0,7	2,42-2,6	1,21-2,07	[8]	
Ca ₂ OsH ₆	2,56		[9]	

рефлексов. При вычислении интенсивности вклад водорода не учитывали.

Предполагалось, что атомы водорода занимают позиции кислорода c: (1/2, 1/2, 0) в структуре типа перовскит. При таком размещении атомов в структуре рассчитанные межатомные расстояния имеют следующие значения: $d_{Ca-H} = 2,5$ Å, $d_{Ni-H} = 1,78$ Å. Эти величины сравнимы с аналогичными расстояниями, определенными для некоторых гидридов (табл. 3). Совокупность экспериментальных данных позволяет предположить, что состав X-фазы отвечает формуле CaNiH₃.

Работа выполнена при поддержке гранта РФФИ № 95-03-08787.

СПИСОК ЛИТЕРАТУРЫ

- Ensslen K., Oesterreicher H., Bucher E. // J. Less-Com. Met. 1981. 77. N 2. P. 287.
- Yagisawa K., Yochikawa A. // Z. Phys Chem. 1979. 117.
 P. 79.
- 3. Grant D.M., Murray J.J., Post M.L. // J. Chem. Thermodyn. 1987. 19. N 11. P. 1217.
- 4. Бокий Г.Б. Кристаллохимия. М., 1960. С. 171.
- 5. Andresen A.F., Maeland A.J. // J. sol. st. chem. 1977. 20. P. 93.
- Baranowski P., Majchrzak S. // Roczn. chem. 1968. 40. N 6. P. 1137.
- 7. Zolliker P., Yvon K., Jordensen J.D. // J. Inorg chem. 1986. 25. P. 3590.
- 8. Calvert L.D., Rowell B.M., Murray J.J. // J. sol. st. chem. 1985. 60. P. 62.
- 9. Кандалова Н.В., Вербецкий В.Р. // Вестн. Моск. унта. 1991. Сер. 2, Химия. 32. С. 419.