УДК 543.544:541.49:54.412.2

ВЛИµНИЕ ПРИРОДЫ НЕПОДВИЖНОЙ ФАЗЫ И ГИДРОФОБНОСТИ ЛИГАНДА В ИОН-ПАРНОЙ ХРОМАТОГРАФИИ ХЕЛАТОВ МЕТАЛЛОВ

Е.М. Басова, О.А. Шпигун, В.М. Иванов

(кафедра аналитической химии)

Изучено удерживание хелатов Cu(II), Co(III), Ni(II), Fe(III), Rh(III), Ru(IV) и Pd(II) с 4-(2-пиридилазо)резорцином (ПАР) и 4-(2-тиазолилазо)резорцином (ТАР) в методе ион-парной хроматографии на трех неподвижных фазах Силасорбах C₂, C₈ и C₁₈ при элюировании смесями ацетонитрил – ацетатный буферный раствор, содержащими бромид тетрабутиламмония в качестве ион-парного реагента. По-казано, что комплексы более гидрофобного ТАР удерживаются сильнее комплексов ПАР. Удерживание комплексов возрастает, а эффективность разделения ухудшается в ряду C₁₈ < C₈ < C₂. Гидрофобные взаимодействия усиливаются в ряду C₁₈ < C₈ < C₂. Селективность максимальна на Силасорбе C₁₈.

При оптимизации разделений в ион-парной хроматографии (ИПХ) основными параметрами являются рН, концентрация и длина углеводородной цепи иона-модификатора, а также содержание органического растворителя в подвижной фазе [1]. Тип неподвижной фазы относят к дополнительным параметрам и практически не используют для оптимизации разделения. Действительно, поскольку в разделениях очень активно участвуют не только привитая фаза, но и адсорбированные компоненты подвижной фазы, широкий ассортимент сорбентов в большинстве случаев не нужен. Изменением состава подвижной фазы в большинстве случаев легко добиться той же селективности, что и за счет применения новой дорогостоящей привитой фазы. Только в том случае, когда задачу не удается решить варьированием состава подвижной фазы, следует рекомендовать смену неподвижной фазы.

Влияние неподвижной фазы на разделение в обращенно-фазовой ВЭЖХ очень велико [2]. Например, сорбенты, содержащие привитые группы октадецилсилана на силикагеле разных фирм, могут дать для одной и той же модельной смеси отличающиеся друг от друга хроматограммы (вплоть до обращения порядка элюирования). Кроме того, даже фирмам-изготовителям чрезвычайно трудно приготовить воспроизводимый от партии к партии сорбент.

В настоящее время в обращенно-фазовой ВЭЖХ вообще и в ИПХ хелатов металлов в частности наиболее часто используют привитой октадецилсилан [3]. По применению силикагелей с привитой C_8^- , нитрильной фазой, а также полимерных сорбентов имеются единичные публикации [3].

В данной работе изучено удерживание хелатов металлов с 4-(2-пиридилазо)резорцином (ПАР) и 4-(2тиазолилазо)резорцином (ТАР), различающихся гидрофобностью, на четырех привитых алкильных фазах на основе силикагеля одной фирмы (Лахема, Чехия): Силасорбе C_2 , Силасорбе C_8 , Силасорбе C_{18} и Сепароне C_{18} с целью выяснения влияния природы неподвижной фазы на основные хроматографические характеристики.

Экспериментальная часть

Растворы комплексов хелатов металлов с ПАР и ТАР получали в среде 50%-го диметилсульфоксида по методикам [4. 5]. Разделение проводили на хроматографе «Милихром-1» на колонках из нержавеющей стали размером (64×2 мм). Длина волны детектора 254 нм. В качестве подвижных фаз использовали водно-ацетонитрильные растворы. В качестве ион-парного реагента применяли бромид тетрабутиламмония (ТБАБ) «ч».

Результаты и обсуждение

Исследуемые сорбенты различаются природой и концентрацией привитых алкильных групп, обеспечивающих гидрофобно-дисперсионные взаимодействия. Степень экранирования непрореагировавших силанольных групп также может быть различной. В литературе предложен ряд тестов для оценки наиболее важных свойств обращенно-фазных сорбентов [6]. Результаты приведены в табл.1. Для характеристики абсолютной удерживающей способности рекомендовано использовать коэффициент емкости бензола или нафталина. Гидрофобные взаимодействия должны увеличиваться в ряду

Силасорб $\mathrm{C}_2 <$ Силасорб $\mathrm{C}_8 <$ Силасорб $\mathrm{C}_{18} <$ Сепарон $\mathrm{C}_{18}.$

Способность сорбентов к силанофильному удерживанию можно оценить по удерживанию нафталина и нафтола. На всех колонках первым элюируется 2-нафтол, затем нафталин, что свидетельствует о незначи-

Таблица 1

Сорбат	Подвижная фаза	Силасорб С ₂ (5 мкм)	Силасорб С ₈ (7.5 мкм)	Силасорб С ₁₈ (4.8 мкм)	Силасорб С ₁₈ (5 мкм)
Бензол	(50:50) Ацетонитрил – 0.1 М фосфатный буферный раствор (рН 2.5)	_	_	411	501
2-Нафтол	(75:25) Ацетонитрил – вода	194	207	174	236
Нафталин	(75:25) Ацетонитрил – вода	218	267	278	305
Бензол	н-Гептан	159	160	139	150
Нитробензол	н-Гептан	263	213	188	340

Объемы удерживания (V_R, мкл) модельных сорбатов на использованных сорбентах

Рис. 1. Хроматограммы хелата Ni(II) с ПАР на: a – Силасорбе С₂, δ –Силасорбе С₈, e – Силасорбе С₁₈. Подвижная фаза (30:70) ацетонитрил – ацетатный буферный раствор (рН 5.2, $5 \cdot 10^{-2}$ М ТБАБ; расход подвижной фазы 100 мкл/мин; λ =254 нм; колонка 64×2 мм)

тельном вкладе в удерживание остаточных силанольных групп. Удерживание 2-нафтола увеличивается в ряду

Силасорб C_{18} < Силасорб C_2 < Силасорб C_8 < Сепарон C_{18} .

Однако эти данные включают удерживание по двум механизмам: с алкильными радикалами и остаточными силанольными группами.

Для выделения вклада в удерживание остаточных силанольных групп изучено удерживание бензола и нитробензола с неполярным элюентом – *н*-гептаном [7]. В этих условиях основным типом взаимодействий сорбат-сорбент, особенно для полярного нитробензола, будет образование водородных связей с остаточными силанольными группами. Действительно, как видно из табл. 1, нитробензол удерживается значительно сильнее бензола, который элюируется в объеме, близком к мертвому объему колонки (121 мкл) на всех колонках. Участие силанольных групп в удерживании возрастает в ряду

Силасорб C_{18} < Силасорб C_8 < Силасорб C_2 < Сепарон C_{18} .

Ранее нами выбраны оптимальные условия разделения смеси тиазолилазорезорцинатов металлов на Сепароне C_{18} [5]. В этих условиях изучено удерживание хелатов металлов с ПАР и ТАР на остальных неподвижных фазах (табл. 2). Реагенты различаются лишь

природой гетероцикла диазосоставляющей, состав и стехиометрия комплексов одинаковы. Видно, что на всех неподвижных фазах хелаты с ТАР удерживаются сильнее хелатов с ПАР, что согласуется с данными по гидрофобности лигандов: ТАР более гидрофобен и растворим только в органических растворителях в отличие от водорастворимого ПАР. Хелаты Fe(III) с ТАР разрушаются во время хроматографирования: на хроматограмме проявляется лишь высокий пик реагента. Это находится в соответствии с уменьшением устойчивости комплексов при замене пиридинового кольца на тиазольное [8]. Комплекс Ni(II) с ТАР в отличие от комплекса с ПАР сильно удерживается на колонке и не элюируется при пропускании ~1500 мкл подвижной фазы. На сильное удерживание комплекса, а не его разрушение, как в случае хелата Fe(III), указывает тот факт, что пик реагента на хроматограмме значительно ниже пика на хроматограмме контрольного опыта. Кроме того, проведение хроматографирования на пластинках «RP-18F254» показало, что пятно хелата Ni(II) с ТАР остается на стартовой линии, а пятно хелата Ni(II) с ПАР движется. Возможно. образуются комплексы разного состава с этими реагентами.

а

Рис. 2. Хроматограммы смесей хелатов металлов с ПАР при элюировании подвижной фазой (25:75) ацетонитрил – ацетатный буферный раствор (pH 5.2, $5 \cdot 10^{-2}$ М ТБАБ; колонка 64×2 мм; неподвижная фаза Силасорб С₁₈; λ =254 нм; расход подвижной фазы, мкл/ мин: a - 50, : $\delta - 100$

Таблица 2

		1		1				-
Неподвижная фаза	Лиганд	Cu(II)	Ni(II)	Co(II)	Fe(III)	Rh(III)	Ru(III)	Pd(II)
Силасорб С2	ПАР (666)	228	410	498	404	507	484	416
	TAP(803)	263	*	697	**	810	538	***
Силасорб С ₈	ПАР (776)	230	312	304	354	320	455	350
	TAP(1170)	245	*	503	**	525	520	***
Силасорб С ₁₈	ПАР (535)	186	301	237	279	225	356	282
	TAP(745)	198	*	342	**	380	450	***
Сепарон С18 [5]	TAP(1460)	356	*	865	**	958	773	***

Зависимость объемов удерживания (мкл) хелатов металлов с ПАР и ТАР от природы неподвижной фазы. Подвижная фаза (30:70) ацетонитрил – ацетатный буферный раствор (рН 5.2; 5·10⁻² М ТБАБ)

Примечания. * - Сильно удерживается на колонке, **- разрушается во время хроматографирования,

***- выпадает в осадок при получении.

Удерживание хелатов металлов с ПАР увеличивается в ряду

Силасорб C₁₈ < Силасорб C₈ < Силасорб C₂,

а хелатов металлов с ТАР увеличивается в ряду

Силасорб C_{18} < Силасорб C_8 < Силасорб C_2 < Сепарон C_{18} ,

который совпадает с рядом сродства к силанофильному удерживанию. Исключение составляют сами реагенты, удерживание которых возрастает в ряду

Силасорб $C_{18} < C$ иласорб $C_2 < C$ иласорб $C_8 < C$ епарон C_{18} (в случае ТАР),

который совпадает с рядом удерживания 2-нафтола (табл. 1).

Таблица З

Сорбент	ПАР	Fe	Co	Ni
Силасорб С2	144	114	178	114
Силасорб С ₈	567	484	324	484
Силасорб С ₁₈	615	_	_	576

Рис. 3. Хроматограмма смеси хелатов металлов с ПАР при элюировании (30:70) ацетонитрил – ацетатный буферный раствор (pH 5.2, 5·10⁻² М ТБАБ; колонка 64×2 мм; неподвижная фаза Силасорб С₈ (7.5 мкм); λ =254 нм; расход подвижной фазы 100 мкл/мин)

Таблица 4

Хроматографическая система	Хелат или реагент	k'	α	R_s
Силасорб С ₁₈ - (25:75)	Cu	0.74	2.12	1.22
	Co	1.56	1.61	1.37
	Fe	2.51	2.51	-
	ПАР	6.31	-	_
ацетонитрил – ацетатный буферций раствор (рН 5.2)	Cu	0.71	2.17	1.00
5·10 ⁻² М ТБАБ)	Rh	1.55	1.71	1.33
	Fe	2.63	1.39	1.14
	Ru	3.65	1.71	2.20
	ПАР	6.23	-	-
	Cu	1.10	1.85	1.50
	Rh	2.03	1.42	2.00
	Ru	2.88	1.91	1.67
Силасорб С ₈ – (30:70) ацетонитрил – ацетатный	ПАР	5.50	-	-
буферный раствор (рН 5.2;	Cu	0.93	2.23	4.00
5.10 М ГБАБ)	Fe	2.08	1.24	1.64
	Ru	2.69	2.00	4.20
	ПАР	5.36	-	-
Силасорб С ₁₈ – (30:70) ацетонитрил – ацетатный буферный раствор (рН 5-2)	Cu	0.57	2.44	2.00
	Ni	1.39	1.27	1.08
	Ru	1.77	1.96	2.82
	ПАР	3.47	-	-
	Cu	0.57	1.59	0.43
5·10 ⁻² М ТБАБ)	Ni	0.91	1.63	1.25
	Rh	1.48	1.25	0.47
	Ru	1.84	1.84	2.38
	ПАР	3.38	-	-

Хроматографические параметры смесей пиридилазорезорцинатов металлов

Размывание пиков на хроматограммах при переходе от Силасорба C_{18} к Силасорбу C_8 и особенно Силасорбу C_2 (рис.1) свидетельствует об увеличении вклада остаточных силанольных групп в удерживание. Эффективность колонок уменьшается в отмеченном ряду (табл. 3).

Как видно из табл 2, селективность разделения (последовательность элюирования) различна на разных сорбентах, особенно для хелатов ПАР. Наибольшая селективность разделения хелатов ПАР достигнута на колонке с Силасорбом С₁₈, на которой удалось разделить четыре комплекса (рис. 2), а для хелатов ТАР – на Сепароне С₁₈ [5]. На колонке с Силасорбом С₈ разделены трехкомпонентные смеси хелатов (рис. 3).

Хроматографические параметры смесей хелатов металлов приведены в табл. 4.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Схунмакерс П*. Оптимизация селективности в хроматографии. М., 1989. С. 30.
- 2. Стыскин Е.Л., Ициксон Л.Б., Брауде Е.В. Практическая высокоэффективная жидкостная хроматография. М., 1986.
- 3. Алимарин И.П., Басова Е.М., Большова Т.А., Иванов В.М. // ЖАХ. 1990. **45.** С. 1478.
- 4. *Иванов В.М.* Гетероциклические азотсодержащие азосоединения. М., 1982.
- 5. Басова Е.М., Большова Т.А., Шаповалова Е.Н., Иванов В.М. // ЖАХ. 1990. **45.** С. 1947.
- 6. Шатц В.Д., Сахартова О.Д. Высокоэффективная жидкостная хроматография. Рига, 1988.
- 7. Иванов В.М. // Успехи химии. 1976. **45.** С. 456.