УДК 541.11

ТЕРМОДИНАМИЧЕСКИЙ АНАЛИЗ ФАЗОВЫХ РАВНОВЕСИЙ В СИСТЕМЕ Pb – Pd

М. Н. Мамонтов

(кафедра физической химии)

Проведена экспертная оценка имеющихся в литературе сведений по фазовой диаграмме системы Pb – Pd. С помощью полиноминальной модели для жидкости и интерметаллических соединений согласованы данные по фазовым равновесиям и термодинамическим свойствам фаз в рассматриваемой системе. Приведены рассчитанные выражения для энергий Гиббса образования интерметаллидов Pb₂Pd, PbPd, Pb₉Pd₁₃, Pb₃Pd₅, PbPd₃ в широком температурном интервале. Построена рассчитанная линия ликвидуса на *T*-*x* проекции фазовой диаграммы.

Система Pb-Pd относится к числу систем, образованных двумя металлами, далеко отстоящими друг от друга в периодической системе элементов. Такие компоненты обладают значительно отличающимися атомными радиусами и, как правило, проявляют сильное взаимодействие друг с другом [1]. Для этих систем характерны отрицательные энтальпии образования расплава и наличие нескольких твердых фаз различных составов. Между Рb и Pd образуются пять промежуточных соединений (Pb₂Pd, PbPd, Pb₀Pd₁₃, Pb₃Pd₅, PbPd₃) и, предположительно, первичные твердые растворы на основе Pd. К настоящему времени усилиями многих исследователей накоплен большой экспериментальный материал по термодинамическим свойствам расплава Pb-Pd и фазовым равновесиям в этой системе. Существующая информация позволяет аналитически описать термодинамические свойства жидкой фазы в широком диапазоне температур и концентраций, определить энергии Гиббса образования всех соединений в системе Pb-Pd и далее рассчитать линию ликвидуса, оптимально согласующуюся с экспериментальными данными.

Исходные экспериментальные данные. Равновесная фазовая диаграмма системы Pb–Pd показана на рис. 1. Области составов и температур, при которых сосуществуют расплав и некоторое соединение, обозначены через l_i . Области, помеченные знаком s_i , соответствуют фазовым равновесиям между соединениями.

Положение линии ликвидуса методом дифференциального термического анализа (ДТА) исследовали в работах [2] (30 точек), [3] (10 точек), [4] (6 точек) в диапазоне составов 0.04 < x < 0.95, где x – мольная доля Pd. Координаты ликвидуса были определены также в работах [5] (13 точек) и [6] (5 точек). В работах [5, 7] измеряли величины электродвижущих сил E в электрохимических ячейках с жидким солевым электролитом. Одним из электродов служил чистый Pb, другим – исследуемый сплав Pb–Pd не-

которого состава. В опытах был охвачен широкий диапазон по составу и температуре: 0.1 < x < 0.6; 600 K < T < 1200 К. Если при изменении температуры исследуемый образец претерпевал фазовое превращение, то на зависимости E(T) наблюдался характерный излом, ему отвечала температура соответствующей точки ликвидуса. В работе [6] с помощью калориметра Кальве измеряли энтальпию ($D_{mix}H$) жидких образцов Pb_{1-x}Pd_x в интервале составов 0 < x < 0.64. По изломам на зависимости $D_{mix} H$ судили о выделении твердой фазы из расплава. Эти точки отвечали линии ликвидуса. Упомянутыми выше методами в работах [2–5, 8, 9] определяли температуры эвтектических и

Рис. 1. Диаграмма фазовых состояний для системы Pb-Pd. Точки – эксперимент из [2-7]; линии – расчет, выполненный в настоящей работе (объяснения приведены в тексте)

перитектических равновесий, обозначенных e_i на рис. 1, p_i (i = 1-3) соответственно. Для e_1 выполнено 18 измерений, для $e_2 - 15$, $e_3 - 4$, $p_1 - 14$, $p_2 - 18$, $p_3 - 14$. В [2] показано, что протяженность твердого раствора на основе Pd при температуре эвтектического равновесия e_3 не превышает 15 ат.%.

При оптимизации были использованы термодинамические свойства фаз, измеренные в [5–7, 10, 11]. Было включено в расчет 695 точек Dm_{Pb} для расплава, 238 значений этой функции для областей l_1-l_4 и 537 ее величин для s_1-s_6 из [7]. Здесь через Dm_{Pb} обозначена парциальная энергия Гиббса (иначе - химический потенциал) Рb в системе Pb–Pd. Первичные экспериментальные данные для s_1-s_6 из [7] были обработаны нами отдельно для каждой гетерогенной области при помощи метода наименьших квадратов (МНК) в предположении линейной зависимости

$$\mathbb{D}n_{\rm Pb}(T) = \mathbb{D}h_{\rm Pb} - T \ \mathbb{D}s_{\rm Pb},$$

где Dh_{Pb} , Ds_{Pb} – парциальные энтальпия и энтропия Pb в соответствующих фазах. Их рассчитанные значения вместе с вычисленным стандартным отклонением аппроксимации приведены в табл. 1. Последняя колонка содержит числа экспериментальных точек Dm_{Pb} для каждой области s_i .

В общей сложности в двух работах [10, 11] получено 33 точки для активности Рb в жидком растворе Pb_{1-x}Pd_x, которые были включены нами в оптимизацию.

Интегральные термодинамические свойства для системы Pb–Pd изучали только в работах [5, 6]. Их авторы калориметрически измеряли энтальпии смешения расплава $Pb_{1-x}Pd_x$ для составов 0.003 < x < 0.64 и температур 623 К < T < 1240 К. Было выполнено 129 измерений, которые целиком учтены нами при расчете.

Термодинамическое описание энергий Гиббса фаз. Для описания термодинамических свойств расплава Pb_{1-x}Pd_x и первичных твердых растворов на основе Pd

Таблица 1

Парциальные термодинамические функции компонента Рb для фазовых областей s_i (i = 1–6), рассчитанные из данных [7]

Область	<i>T</i> , K	<u>Δh_{Pb},</u> <u>Δs_{Pb},</u> Дж/моль Дж/К·молн		<i>s</i> 0, Дж/моль	Число точек
s_1	594–717	-15665.167	-13.580351	2.4	142
<i>s</i> ₂	600-774	-20736.63	-15.634138	6.0	70
<i>s</i> ₃	620-705	-17259.91	1.017583	8.0	55
s_4	644–744	-23108.03	-0.0101317	8.0	41
\$5	709–759	-28139.74	-14.340765	12.0	38
<i>s</i> ₆	748–928	-11584.84	15.47416	4.0	191

использовали полиномиальную модель энергии Гиббса, представленную уравнением Редлиха-Кистера [12]

$$\frac{\Delta_{mix} G}{R} = (1 - x) \cdot T \cdot \ln(1 - x) + x \cdot T \cdot \ln(x) + \sum_{i=1}^{n} x \cdot (1 - x) \cdot (A_i + B_i \cdot T + C_i \cdot T \cdot \ln(T)) \cdot (1 - 2 \cdot x)^{i-1}, \quad (1)$$

где R = 8.314 Дж / К·моль – универсальная газовая постоянная, A_i , B_i , C_i – параметры взаимодействия. В рамках этой модели химические потенциалы компонентов выражаются следующим образом:

$$\frac{\Delta \mu_{\rm Pb}}{R} = T \cdot \ln(1-x) + x^2 \sum_{i=1}^{\infty} (A_i + B_i \cdot T + x) + C_i \cdot T \cdot \ln(T) \cdot (2i \cdot (1-x) - 1) \cdot (1-2x)^{i-2} , \qquad (2)$$

$$\frac{\Delta \mu_{Pd}}{R} = T \cdot \ln(x) + (1 - x)^2 \sum_{i=1}^{\infty} (A_i + B_i \cdot T + i) + C_i \cdot T \cdot \ln(T) \cdot (1 - 2i \cdot x) \cdot (1 - 2x)^{i-2} .$$
(3)

Как оказалось, полиномиальная модель позволяет удовлетворительно описать экспериментальную информацию, учтенную при согласовании.

При выборе вида функций для энергий Гиббса интерметаллических соединений был принят ряд упрощающих допущений, которые заключались в следующем. По данным [7–9] фазы Pb₂Pd, PbPd, Pb₉Pd₁₃ обладают незначительной (<1 ат.%) протяженностью по составу. В то же время, как следует из тщательных рентгенографических исследований, проведенных в [4], максимальная ширина по составу области гомогенности соединения Pb₃Pd₅ достигает примерно 3 ат.% при температуре 884 К (на рис. 1 не показано).

В литературе встречаются некоторые упоминания о диапазоне составов, в котором существует и фаза PbPd₃, но экспериментальные подтверждения этой гипотезы пока отсутствуют. Для облегчения расчетов в ходе оптимизации мы предполагали стехиометрический характер всех пяти соединений в системе Pb-Pd, т.е. отсутствие концентрационной зависимости в выражениях для их энергий Гиббса. Второе упрощение касалось структуры рассматриваемых соединений. По данным [4, 8, 9] у PbPd существуют две структурные модификации, которые переходят друг в друга при повышении температуры. Для веществ Pb₉Pd₁₃, Pb₃Pd₅ при различных температурах характерны три типа структуры, каждая из которых должна описываться своей температурной зависимостью энергии Гиббса образования. Принятое нами допущение заключалось в том, что эта термодинамическая функция любого из интерметаллических соединений в системе Pb-Pd от низких температур до точки его плавления или перитектического разложения описывалась единой формулой вида

$$\frac{\Delta_{f} G(Pb_{n}Pd_{m})}{(n+m)} = a_{n,m} + b_{n,m} \cdot T + c_{n,m} \cdot T \cdot \ln(T) + d_{n,m} \cdot T^{2} + e_{n,m} \cdot T^{3} , \qquad (4)$$

где выражение $D_f G(Pb_n Pd_m)$ отвечает реакции:

$$n\operatorname{Pb}(l) + m\operatorname{Pd}(l) = \operatorname{Pb}_{n}\operatorname{Pd}_{m}(s),$$

где l и s – жидкое и твердое состояния соответственно. Фазовое превращение низкотемпературной модификации соединения в высокотемпературную должно сопровождаться двумя нонвариантными равновесиями. На фазовой диаграмме они должны обозначаться горизонтальными отрезками слева и справа от рассматриваемого соединения. Температуры таких превращений, измеренные в [4, 8, 9], на рис.1 не показаны. Прямые по обе стороны от фазы Pb₃Pd₅ нанесены при температурах 703, 743 K, отвечающих изломам на зависимостях E(T) в [7], для областей s_3 , s_4 и s_5 , s_6 .

В процессе расчетов для энергий Гиббса чистых Pb и Pd использованы данные [14], содержащие выражения для функций $G_l^0 - G_s^0$, где G_l^0 – энергия Гиббса некоторого элемента в фазе *i*. Параметры $A_p B_p C_i$, $a_{n,m} - e_{n,m}$ являют-

ся неизвестными и подлежат определению в процессе оптимизации.

Оценка параметров моделей и расчет ликвидуса. Согласование термодинамических данных для системы Pb–Pd заключалось в поиске минимума целевой функции F по варьируемым параметрам моделей A_p , B_p , C_i . Наилучшим считался такой набор их значений, при котором F принимала минимальное значение. Выражение для F имело стандартный вид

$$F = \sqrt{\sum_{i=1}^{M} \frac{w_i^2}{M} \cdot (\frac{Z_i \text{ выч} - Z_i \text{ эксп}}{Z_i \text{ эксп}})^2},$$

где Z обозначает либо одну из таких термодинамических функций расплава как активность Pb, химический потенциал Pb, энтальпию смешения, либо температуру ликвидуса в некоторой точке, температуру нонвариантных равновесий с участием жидкости, либо состав насыщенного твердого раствора на основе Pd при температуре эвтектического равновесия e_3 . Здесь M = 987 – число экспериментальных точек. Весовые множители w_i определяли один раз перед минимизацией по формуле

$$w_{i} = \frac{Z_{i} \ \Im \kappa c \Pi}{\Delta Z_{i} \ \Im \kappa c \Pi}$$

где DZ_i эксп – ошибка *i*-го измерения. Погрешность измерений *E* в [5] мы оценили в 1 мВ, погрешность измерения активностей [10, 11] и энтальпий [5, 6] – в 10 и 5% соответственно. Разброс экспериментальных точек ликвидуса, по нашему мнению, составляет ±12 К. Ошибка в определении температур эвтектических и перитектических равновесий в среднем составляет 3 К.

Минимизацию *F* проводили симплекс-методом с помощью компьютерной программы из [15]. В табл. 2 представлены коэффициенты A_i , B_i , C_i , отвечающие минимуму *F*. В ходе минимизационной процедуры перед каждой итерацией рассчитывали функции. $D_f G(Pb_nPd_m)$ Для этого, исходя из текущих значений параметров A_i , B_i , C_i для расплава, находили химические потенциалы Pb, Pd в точках ликвидуса ($x_{i,sken}$, $T_{i,shiч}$) по формулам (2, 3). Кроме того, пользуясь экспериментальными значениями Dm_{Pb} в двухфазных областях l_1-l_4 из [7], можно было рассчитать химические потенциалы двух компонентов вдоль ликвидуса. С этой целью для каждого значения $Dm_{Pb, sken}$ из l_1-l_4 решалось уравнение

$$Dn_{Pb} = Dm_{Pb, 3KC\Pi}$$
,

Рис. 2. Энергии Гиббса образования интерметаллических соединений Pb_nPd_m из твердых Pb и Pd: $1 - Pb_2Pd$, 2 - PbPd, $3 - Pb_9Pd_{13}$, $4 - Pb_3Pd_5$, $5 - PbPd_3$ (объяснения приведены в тексте)

где в левой части подразумевается выражение (2). Для найденного значения *x* и известной температуры

Таблица 2

Параметры взаимодействия для фаз в системе Pb – Pd

Фаза	A_1	B_1	C_1	A_2	B_2	A_3	A_4
Расплав	-16678	-2.1815	0	13464	1.0285	-9358	3193
(Pd)*	259523.5	-1610.3426	195.3211	0	0	-54338.22	-10472.22

*Первичный твердый раствор на основе Pd.

Таблица З

Энергии Гиббса образования интерметаллических фаз Pb_nPd_m из жидких Pb, Pd D_fG(Pb_nPd_m)/(n + m)= $a_{n,m}+b_{n,m}T+c_{n,m}T\ln(T)+d_{n,m}T^2+e_{n,m}T^3$, Дж/гжтом

Фаза	а	b	С	d	е	<i>Т</i> , К
Pb ₂ Pd	-31052.9	-18.7857	2.957333	0	0	500-728
PbPd	-33907.03	-91.0363	11.940776	0	0	500-774
Pb ₉ Pd ₁₃	-39701.8	-22.5392	0	0.0134305	0	500-884
Pb ₃ Pd ₅	-33369.4	-57.2558	0	0.0632041	$-2.39587 \cdot 10^{-5}$	500-1106
PbPd ₃	-42374.4	-122.2167	15.652425	0	0	500-1495

Таблица 4

Координаты эвтектик и перитектик в системе Pb – Pd

	e1	e ₂	p 1	p ₂	p ₃	e ₃
x, Pd	0.085	0.378	0.438	0.504	0.595	0.783*
$T_{\rm выч}$	538.4	720.6	773.9	883.8	1105.9	1464.6
Т эксп	535–2	721–2	772–2	882-2	1106–2	1467–4
Литературный источник	[2, 3]	[2-5, 8]	[2, 4, 5, 8, 9]	[2, 4, 7, 8]	[2, 4]	[2]

*Состав твердого раствора на основе Pd: x = 0.844.

Рис. З Интегральные термодинамические функции расплава в системе Pb–Pd при 1170 К. Точки – эксперимент [5], [6] $(T = 1154 \text{ K}): I - D_{\text{mix}}G$, 2, 4 – $D_{\text{mix}}H$, 3 – $D_{\text{mix}}S$ (объяснения приведены в тексте)

Рис. 4. Активность Pb в расплаве Pb–Pd. I, 2 – расчет при T = 1050, 1373 K соответственно, 3 – закон Рауля, 4 – эксперимент из [10] при T = 1050 K, 5 – эксперимент из [11] при T = 1373 K

6 ВМУ, Химия, № 4

рассчитывали химические потенциалы компонентов по формулам (2, 3). Из массива пар величин Dm_{Pb} , Dm_{Pd} , отвечающих ликвидусу, рассчитывали значения $D_f G(Pb_n Pd_m)$ в диапазонах температур, при которых каждое из соединений находится в равновесии с расплавом

$$D_f G(Pb_n Pd_m) = n Dm_{Pb} + m Dm_{Pd}.$$
(5)

Для расчета энергии Гиббса всех соединений при более низких температурах применяли несложную схему. Если при некоторых температуре и составе, принадлежащих одной из областей s_1-s_6 , в равновесии находятся фазы $Pb_{n1}Pd_{m1}$ и $Pb_{n2}Pd_{m2}$, то из условия материального баланса вытекает, что

$$m_1 Pb_{n2}Pd_{m2} = m_2 Pb_{n1}Pd_{m1} - (m_2n_1 - m_1n_2)Pb$$

Отсюда

$$\Delta_{f} G (Pb_{n} Pd_{m}) = \frac{m_{2}}{m_{1}} \cdot \Delta_{f} G (Pb_{n1} Pd_{m1}) - \frac{(m_{2}n_{1} - m_{1}n_{2})}{m_{1}} \cdot \Delta \mu_{Pb} ,$$

где Dm_{Pb} отвечает рассматриваемой фазовой области s_i . Таким образом последовательно рассчитывали значения $D_f G$ всех твердых фаз от Pb_2Pd до $PbPd_3$ при различных температурах. Они аппроксимировались с помощью МНК функцией (4) в отдельности для каждой фазы Pb_nPd_m . Полученные в явном виде зависимости $D_f G(Pb_nPd_m)$ на этапе каждой итерации процедуры минимизации позволяли рассчитать ликвидус для сравнения его с экспериментальными данными. Точки $D_f G(Pb_nPd_m) / (n+m)$ и аппроксимирующие их зависимости, соответствующие набору параметров взаимодействия для расплава из табл. 2, показаны на рис. 2. Они представлены как деленные на (n+m) энергии Гиббса образования соединений по реакции

$$nPb(s) + mPd(s) = Pb_nPd_m(s)$$
.

Если это необходимо, то энергию Гиббса образования Pb_nPd_m из твердых компонентов можно пересчитать на жидкие Pb и Pd следующим образом:

$$D_f G(жидк) = D_f G(тверд) - n(G_l^0(Pb)) - -G_s^0(Pb)) - m(G_l^0(Pd)) - G_s^0(Pd))$$

В табл. 3 приведен окончательный набор параметров *a*-*e*, стоящих в выражениях для энергий Гиббса интерметаллических фаз.

После завершения процедуры оптимизации стало возможно рассчитать ликвидус во всем диапазоне концентраций. На рис. 1 рассчитанный ликвидус показан сплошной кривой. Вычисленная граница области растворимости Pb в Pd отмечена пунктиром, потому что в литературе отсутствует какая-либо информация, позволяющая сделать вывод о достоверности расчета.

Обсуждение результатов

О качестве проведенного расчета положения линии ликвидуса можно судить по рис. 1 и табл. 4. Из шести нонвариантных равновесий только для одного вычисленная температура не укладывается в доверительный интервал соответствующей экспериментальной величины.

На рис. 3 показаны рассчитанные интегральные свойства расплава. Для концентрационной зависимости энергии Гиббса характерен асимметричный вид с минимумом около x = 0.7. Энтальпия принимает существенно отрицательные значения во всем диапазоне составов. Максимальное отклонение рассчитанных величин $D_{mix}H$ от экспериментальных [5, 6] не превышает 5 %. На ри-

СПИСОК ЛИТЕРАТУРЫ

- Yavari A.R. // International J. of Rapid Solidification. 1986. 2. P. 047.
- 2. Ruer R. // Z. Anorg. Chem. 1907. 52. P. 345.
- 3. Marcotte V.C. // Metall. Trans. B. P. 185.
- 4. *Ellner M., Godecke T., Schubert K. //* Z. Metallkd. 1973. **64.** 566.
- Vassiliev V., Mathon M., Gambino M., Bros J.P. // J. Alloys and Compounds. 1994. 215. P. 141.
- 6. Michel M.L., Bros H., Castanet R. // Z. Metallkd. 1993. 84. P. 174.
- 7. Vassiliev V., Gambino M., Bros J.P. // (в печати).

сунке цифрой 4 обозначен график функции $D_{mix}H$, полученной в результате использования оптимизационной процедуры, в ходе которой совсем не учитывались экспериментальные точки по энтальпии смешения расплава из [5, 6]. Как видно из рис. 3, учет данных последних двух работ (кривая 2) значительно улучшает совпадение результатов расчета с экспериментом. Участки кривых, отвечающие метастабильному состоянию жидкости, показаны пунктиром.

На рис. 4 вычисленные значения активности Pb в расплаве сравниваются с экспериментальными точками из [10, 11] при двух температурах. Максимальное расхождение между расчетом и измеренными величинами составляет 10%. Рис. 3 и 4 свидетельствуют об отрицательном отклонении от идеальности в поведении жидкого раствора системы Pb–Pd.

- Mayer H.W., Ellner M., Schubert K. // J. Less-Comm. Metals, 1980. 71. P. P29.
- 9. Mayer H.W., Schubert K. // J. Less-Comm. Metals. 1980. 72. P. 1.
- 10. Sommer F., Suh Y.H., Predel B. // Z. Metalld. 1978. 69. P. 401.
- 11. Schwerdtfoger K. // Trans. Metal. Soc. AIME. 1966. 236. P. 32.
- 12. Redlich O., Kister A.T. // Ind. Engng. Chem. 1948. 40. P. 345.
- Brebrick R.F., Ching-Hua Su, Pok-Kai Liao / Semiconductors and semimetals. N.Y., 1983. 19. P. 172.
- 14. Dinsdale A.T. // CALPHAD. 1991. 15. P. 317.

Р

 Nash J.C., Walker-Smith N. // Nonlinear parameter estimation. An integrated system on BASIC. N.Y., Basel, 1987. P. 493.

Поступила в редакцию 28.04.98